World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

ENHANCING THE YIELD OF HIGH-DENSITY ELECTRODE ARRAYS THROUGH AUTOMATED ELECTRODE SELECTION

    https://doi.org/10.1142/S0129065712003055Cited by:28 (Source: Crossref)

    Recently developed CMOS-based microprobes contain hundreds of electrodes on a single shaft with inter-electrode distances as small as 30 μm. So far, neuroscientists needed to select electrodes manually from hundreds of electrodes. Here we present an electronic depth control algorithm that allows to select electrodes automatically, hereby allowing to reduce the amount of data and locating those electrodes that are close to neurons. The electrodes are selected according to a new penalized signal-to-noise ratio (PSNR) criterion that demotes electrodes from becoming selected if their signals are redundant with previously selected electrodes. It is shown that, using the PSNR, interneurons generating smaller spikes are also selected. We developed a model that aims to evaluate algorithms for electronic depth control, but also generates benchmark data for testing spike sorting and spike detection algorithms. The model comprises a realistic tufted pyramidal cell, non-tufted pyramidal cells and inhibitory interneurons. All neurons are synaptically activated by hundreds of fibers. This arrangement allows the algorithms to be tested in more realistic conditions, including backgrounds of synaptic potentials, varying spike rates with bursting and spike amplitude attenuation.

    References

    Remember to check out the Most Cited Articles!

    Check out our titles in neural networks today!