ENHANCING THE YIELD OF HIGH-DENSITY ELECTRODE ARRAYS THROUGH AUTOMATED ELECTRODE SELECTION
Abstract
Recently developed CMOS-based microprobes contain hundreds of electrodes on a single shaft with inter-electrode distances as small as 30 μm. So far, neuroscientists needed to select electrodes manually from hundreds of electrodes. Here we present an electronic depth control algorithm that allows to select electrodes automatically, hereby allowing to reduce the amount of data and locating those electrodes that are close to neurons. The electrodes are selected according to a new penalized signal-to-noise ratio (PSNR) criterion that demotes electrodes from becoming selected if their signals are redundant with previously selected electrodes. It is shown that, using the PSNR, interneurons generating smaller spikes are also selected. We developed a model that aims to evaluate algorithms for electronic depth control, but also generates benchmark data for testing spike sorting and spike detection algorithms. The model comprises a realistic tufted pyramidal cell, non-tufted pyramidal cells and inhibitory interneurons. All neurons are synaptically activated by hundreds of fibers. This arrangement allows the algorithms to be tested in more realistic conditions, including backgrounds of synaptic potentials, varying spike rates with bursting and spike amplitude attenuation.
References
- Nat. Neurosci. 7(5), 456 (2004). Crossref, Medline, Web of Science, Google Scholar
- Nat. Neurosci. 7(5), 446 (2004). Crossref, Medline, Web of Science, Google Scholar
- Advances in Network Electrophysiology: Using Multi-Electrode Arrays, eds.
M. Taketani and M. Baudry (Springer, New York, 2006) pp. 3–23. Crossref, Google Scholar , K. Seidl , CMOS-based high-density silicon microprobe array for electronic depth control in neural recording, Proc. 22nd IEEE Int. Conf. on Micro Electro Mechanical Systems (MEMS) (2009) pp. 232–235. Google Scholar- Biomed. Tech. 55(3), 183 (2010). Crossref, Medline, Web of Science, Google Scholar
- T. Torfs, A. A. A. Aarts, M. A. Erismis, J. Aslam, R. F. Yazicioglu, K. Seidl, S. Herwik, I. Ulbert, B. Dombov'ari, R. Fi'ath, B. P. Kerekes, R. Puers, O. Paul, P. Ruther, C. Van Hoof and H. P. Neves, Two-dimensional multi-channel neural probes with electronic depth control, IEEE Trans. Biomed. Circuits Syst., accepted . Google Scholar
- IEEE Trans. Biomed. Eng. 53(5), 941 (2006). Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. Methods 189(2), 216 (2010). Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. Methods 112(2), 83 (2001). Crossref, Medline, Web of Science, Google Scholar
- J. Neurophysiol. 93(1), 570 (2005). Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. Methods 160(1), 45 (2007). Crossref, Medline, Web of Science, Google Scholar
- Front. Neuroeng. 3(10), 1 (2010). Medline, Web of Science, Google Scholar
H. P. Neves , The NeuroProbes project: A concept for electronic depth control, Proc. 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2008) p. 1857. Google ScholarH. P. Neves , Development of multifunctional probe arrays for cerebral applications, Proc. 3rd Int. IEEE EMBS Conf. on Neural Engineering (2007) pp. 104–109. Google Scholar- Biomed. Tech. 53(1), 238 (2008). Web of Science, Google Scholar
H. P. Neves and P. Ruther , The NeuroProbes project, Proc. 29th Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society (2007) pp. 6442–6444. Google Scholar- J. Micromech. Microeng. 19(7), 074008 (2009). Crossref, Web of Science, Google Scholar
- IEEJ Trans. Electr. Electron. Eng. 5(5), 505 (2010). Crossref, Web of Science, Google Scholar
- J. Microelectromech. Syst. (2011). Google Scholar
- J. Micromech. Microeng. 18(6), 064004 (2008). Crossref, Web of Science, Google Scholar
A. A. A. Aarts , Recent advances in interconnect technology for slim-base biomedical probe arrays, Proc. 15th Int. Conf. on Solid-State Sensors, Actuators & Microsystems (Transducers, 2009) pp. 1975–1978. Google Scholar- J. Microelectromech. Syst. (2011). Google Scholar
- Nat. Neurosci. 10(10), 1308 (2007). Crossref, Medline, Web of Science, Google Scholar
- J Neurophysiol. 93(4), 2194 (2005). Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. 21(10), 3580 (2001). Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. Methods 141(2), 291 (2005). Crossref, Medline, Web of Science, Google Scholar
- J. Neurophysiol. 89(2), 909 (2003). Crossref, Medline, Web of Science, Google Scholar
- Eur. J. Neurosci. 25(11), 3347 (2007). Crossref, Medline, Web of Science, Google Scholar
- Eur. J. Neurosci. 23(33), 1207 (2006). Crossref, Medline, Web of Science, Google Scholar
- J. Comput. Neurosci. 6(2), 169 (1999). Crossref, Medline, Web of Science, Google Scholar
- J. Neurophysiol. 95(5), 3113 (2006). Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. 23(33), 10503 (2003). Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. 20(16), 6181 (2000). Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. Methods 177(1), 194 (2009). Crossref, Medline, Web of Science, Google Scholar
- IEEE Trans. Biomed. Eng. 52(1), 74 (2005). Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. 19(1), 274 (1999). Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. 28(46), 11830 (2008). Crossref, Medline, Web of Science, Google Scholar
- IEEE Trans. Biomed. Eng. 51(6), 912 (2004). Crossref, Medline, Web of Science, Google Scholar
- Neural Comput. 6(5), 1005 (1994). Crossref, Web of Science, Google Scholar
- Network 9(4), R53 (1998). Crossref, Medline, Web of Science, Google Scholar
- Advances in Neural Information Processing Systems 10, eds.
M. I. Jordan , M. J. Kearns and S. A. Solla (MIT Press, Cambridge, MA, 1998) pp. 222–228. Google Scholar , - J. Neurosci. Methods 127(2), 111 (2003). Crossref, Medline, Web of Science, Google Scholar
- IEEE Trans. PAMI 24(3), 381 (2002). Crossref, Web of Science, Google Scholar
- J. Neurophysiol. 84(1), 401 (2000). Crossref, Medline, Web of Science, Google Scholar
- Proc. Natl. Acad. Sci. USA 93(18), 9921 (1996). Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. 17(17), 6512 (1997). Crossref, Medline, Web of Science, Google Scholar
- Trends Neurosci. 20(3), 125 (1997). Crossref, Medline, Web of Science, Google Scholar
- Neuron 32(1), 141 (2001). Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. 21(1), 240 (2001). Crossref, Medline, Web of Science, Google Scholar
- J. Neurophysiol. 91(6), 2910 (2004). Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. Methods 165(1), 151 (2007). Crossref, Medline, Web of Science, Google Scholar
- Neural Comput. 13(4), 751 (2001). Crossref, Medline, Web of Science, Google Scholar
- Neurocomputing 54, 925 (2003). Google Scholar
- J. Neurophysiol. 80(3), 1427 (1998). Crossref, Medline, Web of Science, Google Scholar
- Nature 419, 65 (2002). Crossref, Medline, Web of Science, Google Scholar
- IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226 (2005). Crossref, Medline, Web of Science, Google Scholar
-
A. Cichocki and S. Amari , Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications ( John Wiley & Sons, Inc , New York, NY, USA , 2002 ) . Crossref, Google Scholar - Int. J. Neural Syst. 19(4), 295 (2009). Link, Web of Science, Google Scholar
- Int. J. Neural Syst. 19(6), 465 (2009). Link, Web of Science, Google Scholar
- Int. J. Neural Syst. 20(6), 463 (2010). Link, Web of Science, Google Scholar
- Int. J. Neural Syst. 21(3), 187 (2011). Link, Web of Science, Google Scholar
- Int. J. Neural Syst. 21(5), 385 (2011). Link, Web of Science, Google Scholar
- Int. J. Neural Syst. 18(4), 267 (2008). Link, Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out our titles in neural networks today! |