ABNORMAL INTERICTAL GAMMA ACTIVITY MAY MANIFEST A SEIZURE ONSET ZONE IN TEMPORAL LOBE EPILEPSY
Abstract
Even though recent studies have suggested that seizures do not occur suddenly and that before a seizure there is a period with an increased probability of seizure occurrence, neurophysiological mechanisms of interictal and pre-seizure states are unknown. The ability of mathematical methods to provide much more sensitive tools for the detection of subtle changes in the electrical activity of the brain gives promise that electrophysiological markers of enhanced seizure susceptibility can be found even during interictal periods when EEG of epilepsy patients often looks 'normal'. Previously, we demonstrated in animals that hippocampal and neocortical gamma-band rhythms (30–100 Hz) intensify long before seizures caused by systemic infusion of kainic acid. Other studies in recent years have also drawn attention to the fast activity (>30 Hz) as a possible marker of epileptogenic tissue. The current study quantified gamma-band activity during interictal periods and seizures in intracranial EEG (iEEG) in 5 patients implanted with subdural grids/intracranial electrodes during their pre-surgical evaluation. In all our patients, we found distinctive (abnormal) bursts of gamma activity with a 3 to 100 fold increase in power at gamma frequencies with respect to selected by clinicians, quiescent, artifact-free, 7–20 min "normal" background (interictal) iEEG epochs 1 to 14 hours prior to seizures. Increases in gamma activity were largest in those channels which later displayed the most intensive electrographic seizure discharges. Moreover, location of gamma-band bursts correlated (with high specificity, 96.4% and sensitivity, 83.8%) with seizure onset zone (SOZ) determined by clinicians. Spatial localization of interictal gamma rhythms within SOZ suggests that the persistent presence of abnormally intensified gamma rhythms in the EEG may be an important tool for focus localization and possibly a determinant of epileptogenesis.
References
- Electroencephalogr. Clin. Neurophysiol. 102(2), 98 (1997). Crossref, Medline, Google Scholar
- Eur. J. Neurosci. 10(2), 786 (1998), DOI: 10.1046/j.1460-9568.1998.00090.x. Crossref, Medline, Web of Science, Google Scholar
- Nat. Med. 4(10), 1173 (1998), DOI: 10.1038/2667. Crossref, Medline, Web of Science, Google Scholar
- Nat. Med. 4(10), 1117 (1998), DOI: 10.1038/2610. Crossref, Medline, Web of Science, Google Scholar
- Neuroreport 10(10), 2149 (1999). Crossref, Medline, Web of Science, Google Scholar
- IEEE Trans. Biomed. Eng. 50(5), 616 (2003), DOI: 10.1109/TBME.2003.810689. Crossref, Medline, Web of Science, Google Scholar
- Brain Topogr. 2(3), 187 (1990), DOI: 10.1007/BF01140588. Crossref, Medline, Google Scholar
- Epilepsy Curr. 8(3), 55 (2008), DOI: 10.1111/j.1535-7511.2008.00236.x. Crossref, Medline, Google Scholar
- Neuron 30(1), 51 (2001), DOI: 10.1016/S0896-6273(01)00262-8. Crossref, Medline, Web of Science, Google Scholar
- Neurology 57(9), 1536 (2001). Crossref, Medline, Web of Science, Google Scholar
- Curr. Opin. Neurol. 15(2), 173 (2002), DOI: 10.1097/00019052-200204000-00008. Crossref, Medline, Web of Science, Google Scholar
- Brain Res. Bull. 52(2), 89 (2000), DOI: 10.1016/S0361-9230(00)00239-2. Crossref, Medline, Web of Science, Google Scholar
- Int. J. Neurosci. 97(1), 149 (1999), DOI: 10.3109/00207459909000657. Crossref, Medline, Web of Science, Google Scholar
- Australas Phys. Eng. Sci. Med. 24(1), 37 (2001), DOI: 10.1007/BF03178284. Crossref, Medline, Google Scholar
- Brain Res. Bull. 58(1), 115 (2002), DOI: 10.1016/S0361-9230(02)00768-2. Crossref, Medline, Web of Science, Google Scholar
- J. Clin. Neurophysiol. 9(3), 441 (1992). Medline, Web of Science, Google Scholar
- Electroencephalogr. Clin. Neurophysiol. 82(2), 155 (1992). Crossref, Medline, Google Scholar
- Electroencephalogr Clin. Neurophysiol. 94(5), 326 (1995). Crossref, Medline, Google Scholar
- Hippocampus 9(2), 137 (1999). Crossref, Medline, Web of Science, Google Scholar
- Epilepsia 41(3), 297 (2000), DOI: 10.1111/j.1528-1157.2000.tb00159.x. Crossref, Medline, Web of Science, Google Scholar
- Electroencephalogr Clin. Neurophysiol. 22(3), 262 (1967). Medline, Google Scholar
- J. Neurol. Neurosurg. Psychiatry 74(1), 51 (2003), DOI: 10.1136/jnnp.74.1.51. Crossref, Medline, Web of Science, Google Scholar
- Adv. Neurol. 8(1), 59 (1975). Medline, Google Scholar
- Epilepsia 5, 1 (1964). Crossref, Medline, Web of Science, Google Scholar
- J. Clin. Neurophysiol. 18(3), 259 (2001). Crossref, Medline, Web of Science, Google Scholar
- Brain 127(7), 1496 (2004), DOI: 10.1093/brain/awh149. Crossref, Medline, Web of Science, Google Scholar
- Epilepsia 40(2), 127 (1999), DOI: 10.1111/j.1528-1157.1999.tb02065.x. Crossref, Medline, Web of Science, Google Scholar
- J. Neurophysiol. 88(4), 1743 (2002). Crossref, Medline, Web of Science, Google Scholar
- Clin. Neurophysiol. 117(10), 2111 (2006), DOI: 10.1016/j.clinph.2006.02.023. Crossref, Medline, Web of Science, Google Scholar
- Clin. Neurophysiol 118(5), 1134 (2007), DOI: 10.1016/j.clinph.2006.12.019. Crossref, Medline, Web of Science, Google Scholar
- Life Sci. 29(20), 2031 (1981). Crossref, Medline, Web of Science, Google Scholar
- Neurobiol. Dis. 35(2), 209 (2009). Crossref, Medline, Web of Science, Google Scholar
- IEEE Trans. Neural Syst. Rehabil. Eng. 17(3), 244 (2009), DOI: 10.1109/TNSRE.2009.2023291. Crossref, Medline, Web of Science, Google Scholar
- What is Epilepsy? The Clinical and Scientific Basis of Epilepsy, eds.
M. R. Trimble and E. H. Reynolds (Churchill Livingstone, Edinburgh, 1986) pp. 97–115. Google Scholar , - Neuroscience 91(4), 1315 (1999), DOI: 10.1016/S0306-4522(98)00636-8. Crossref, Medline, Web of Science, Google Scholar
- Epilepsia 38(), 189 (1997). Medline, Web of Science, Google Scholar
- Biocomputing, eds.
P. M. Pardalos and J. C. Principe (Kluwer Academic Publishers, Dordrecht, 2002) pp. 140–158. Google Scholar , - IEEE Trans. Biomed. Eng. 51(3), 493 (2004), DOI: 10.1109/TBME.2003.821013. Crossref, Medline, Web of Science, Google Scholar
- J. Comb. Optim. 17, 74 (2009), DOI: 10.1007/s10878-008-9181-x. Crossref, Medline, Web of Science, Google Scholar
- Trends Cogn. Sci. 5(1), 16 (2001), DOI: 10.1016/S1364-6613(00)01568-0. Crossref, Medline, Web of Science, Google Scholar
H. Cao , Improved separability of dipole sources by tripolar versus conventional disk electrodes: A modeling study using independent component analysis, Conf. Proc. IEEE Eng. Med. Biol. Soc.2009 (2009) pp. 4023–4026. Google Scholar- Brain Res. 1236, 145 (2008), DOI: 10.1016/j.brainres.2008.07.122. Crossref, Medline, Web of Science, Google Scholar
- J. Neurosci. Methods 123(1), 69 (2003), DOI: 10.1016/S0165-0270(02)00340-0. Crossref, Medline, Web of Science, Google Scholar
- Advances in the Application of Technology to Epilepsy: The CIMIT/NIO Epilepsy Innovation Summit. Epilepsy Behav 16, eds.
S. C. Schachter (2009) pp. 22–23. Google Scholar , - Epilepsia 43(8), 836 (2002), DOI: 10.1046/j.1528-1157.2002.24901.x. Crossref, Medline, Web of Science, Google Scholar
- Int. J. Neural Syst. 19(3), 173 (2009). Link, Web of Science, Google Scholar
- Epilepsia 48(12), 2273 (2007). Crossref, Medline, Web of Science, Google Scholar
W. Besio , K. Gale and A. Medvedev , Possible therapeutic effects of transcutaneous electrical stimulation via concentric ring electrodes, 10th Workshop on Neurobiology of Epilepsy (WONOEP 2009)51 (Epilepsia, 2010) pp. 85–87. Google Scholar- Int. J. Neural Syst. 19(3), 157 (2009). Link, Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out our titles in neural networks today! |