World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

The excitation spectrum of the Bose gas in the Gross–Pitaevskii regime

    https://doi.org/10.1142/S0129055X20600065Cited by:6 (Source: Crossref)
    This article is part of the issue:

    We consider a gas of interacting bosons trapped in a box of side length one in the Gross–Pitaevskii limit. We review the proof of the validity of Bogoliubov’s prediction for the ground state energy and the low-energy excitation spectrum. This note is based on joint work with C. Brennecke, S. Cenatiempo and B. Schlein.

    AMSC: 81V70, 82B10, 81–06

    References

    • 1. N. Benedikter, G. de Oliveira and B. Schlein , Quantitative derivation of the Gross–Pitaevskii equation, Comm. Pure Appl. Math. 68 (2014) 1399–1482. Crossref, Web of ScienceGoogle Scholar
    • 2. C. Boccato, C. Brennecke, S. Cenatiempo and B. Schlein , Complete Bose–Einstein condensation in the Gross–Pitaevskii regime, Comm. Math. Phys. 359(3) (2018) 975–1026. Crossref, Web of Science, ADSGoogle Scholar
    • 3. C. Boccato, C. Brennecke, S. Cenatiempo and B. Schlein , Bogoliubov theory in the Gross–Pitaevskii limit, Acta Math. 222(2) (2019) 219–335. Crossref, Web of ScienceGoogle Scholar
    • 4. C. Boccato, C. Brennecke, S. Cenatiempo and B. Schlein , Optimal rate for Bose–Einstein condensation in the Gross–Pitaevskii regime, Comm. Math. Phys. (2019); https://doi.org/10.1007/s00220-019-03555-9. Web of ScienceGoogle Scholar
    • 5. N. N. Bogoliubov, On the theory of superfluidity, Izv. Akad. Nauk. USSR 11 (1947) 77–90; Engl. Transl. J. Phys. (USSR) 11 (1947) 23–32. Google Scholar
    • 6. S. N. Bose , Plancks Gesetz und Lichtquantenhypothese, Z. Phys. 26 (1924) 178–181. Crossref, ADSGoogle Scholar
    • 7. C. Brennecke and B. Schlein , Gross–Pitaevskii dynamics for Bose–Einstein condensates, Anal. PDE 12 (2019) 1513–1596. Crossref, Web of ScienceGoogle Scholar
    • 8. B. Brietzke and J. P. Solovej, The second order correction to the ground state energy of the dilute Bose gas, Preprint; arXiv:1901.00537. Google Scholar
    • 9. B. Brietzke, S. Fournais and J. P. Solovej, A simple 2nd order lower bound to the energy of dilute Bose gases, Preprint; arXiv:1901.00539. Google Scholar
    • 10. J. Dereziński and M. Napiórkowski , Excitation spectrum of interacting bosons in the mean-field infinite-volume limit, Ann. Henri Poincaré 15 (2014) 2409–2439. Crossref, Web of Science, ADSGoogle Scholar
    • 11. A. Einstein, Quantentheorie des einatomigen idealen Gases, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Klasse (1924) 261–267; Zweite Abhandlung. Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Klasse (1925) 3–14. Google Scholar
    • 12. L. Erdős, B. Schlein and H.-T. Yau , Ground-state energy of a low-density Bose gas: A second order upper bound, Phys. Rev. A 78 (2008) 053627. Crossref, Web of Science, ADSGoogle Scholar
    • 13. S. Fournais and J. P. Solovej, The energy of dilute Bose gases, Preprint; arXiv:1904.06164. Google Scholar
    • 14. A. Giuliani and R. Seiringer , The ground state energy of the weakly interacting Bose gas at high density, J. Stat. Phys. 135 (2009) 915–934. Crossref, Web of Science, ADSGoogle Scholar
    • 15. P. Grech and R. Seiringer , The excitation spectrum for weakly interacting bosons in a trap, Comm. Math. Phys. 322(2) (2013) 559–591. Crossref, Web of Science, ADSGoogle Scholar
    • 16. L. D. Landau , Theory of the superfluidity of helium II, Phys. Rev. 60 (1941) 356–358. Crossref, ADSGoogle Scholar
    • 17. M. Lewin, P. T. Nam, S. Serfaty and J. P. Solovej , Bogoliubov spectrum of interacting Bose gases, Comm. Pure Appl. Math. 68(3) (2014) 413–471. Crossref, Web of ScienceGoogle Scholar
    • 18. E. H. Lieb and R. Seiringer , Proof of Bose–Einstein condensation for dilute trapped gases, Phys. Rev. Lett. 88 (2002) 170409. Crossref, Web of Science, ADSGoogle Scholar
    • 19. E. H. Lieb and R. Seiringer , Derivation of the Gross–Pitaevskii equation for rotating Bose gases, Comm. Math. Phys. 264(2) (2006) 505–537. Crossref, Web of Science, ADSGoogle Scholar
    • 20. E. H. Lieb, R. Seiringer and J. Yngvason , Bosons in a trap: A rigorous derivation of the Gross–Pitaevskii energy functional, Phys. Rev. A 61 (2000) 043602. Crossref, Web of Science, ADSGoogle Scholar
    • 21. E. H. Lieb and J. P. Solovej, Ground state energy of the one-component charged Bose gas, Comm. Math. Phys. 217 (2001) 127–163; Errata, ibid. 225 (2002) 219–221. Google Scholar
    • 22. E. H. Lieb and J. Yngvason , Ground state energy of the low density Bose gas, Phys. Rev. Lett. 80 (1998) 2504–2507. Crossref, Web of Science, ADSGoogle Scholar
    • 23. P. T. Nam, N. Rougerie and R. Seiringer , Ground states of large bosonic systems: The Gross–Pitaevskii limit revisited, Anal. PDE 9(2) (2016) 459–485. Crossref, Web of ScienceGoogle Scholar
    • 24. M. Napiórkowski, R. Reuvers and J.-P. Solovej , The Bogoliubov free energy functional I. Existence of minimizers and phase diagrams, Arch. Ration. Mech. Anal. 229 (2018) 1037–1090. Crossref, Web of ScienceGoogle Scholar
    • 25. M. Napiórkowski, R. Reuvers and J.-P. Solovej , The Bogoliubov free energy functional II. The dilute limit, Comm. Math. Phys. 360 (2018) 347–403. Crossref, Web of Science, ADSGoogle Scholar
    • 26. A. Pizzo, Bose particles in a box III, A convergent expansion of the ground state of the Hamiltonian in the mean field limiting regime, Preprint; arXiv:1511.07026. Google Scholar
    • 27. R. Seiringer , The excitation spectrum for weakly interacting bosons, Comm. Math. Phys. 306 (2011) 565–578. Crossref, Web of Science, ADSGoogle Scholar
    • 28. H.-T. Yau and J. Yin , The second order upper bound for the ground state energy of a Bose gas, J. Stat. Phys. 136(3) (2009) 453–503. Crossref, Web of Science, ADSGoogle Scholar