World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Strict deformation quantization of the state space of Mk() with applications to the Curie–Weiss model

    https://doi.org/10.1142/S0129055X20500312Cited by:10 (Source: Crossref)

    Increasing tensor powers of the k×k matrices Mk() are known to give rise to a continuous bundle of C-algebras over I={0}1/[0,1] with fibers A1/N=Mk()N and A0=C(Xk), where Xk=S(Mk()), the state space of Mk(), which is canonically a compact Poisson manifold (with stratified boundary). Our first result is the existence of a strict deformation quantization of Xk à la Rieffel, defined by perfectly natural quantization maps Q1/N:Ã0A1/N (where Ã0 is an equally natural dense Poisson subalgebra of A0).

    We apply this quantization formalism to the Curie–Weiss model (an exemplary quantum spin with long-range forces) in the parameter domain where its 2 symmetry is spontaneously broken in the thermodynamic limit N. If this limit is taken with respect to the macroscopic observables of the model (as opposed to the quasi-local observables), it yields a classical theory with phase space X2B3 (i.e. the unit three-ball in 3). Our quantization map then enables us to take the classical limit of the sequence of (unique) algebraic vector states induced by the ground state eigenvectors ΨN(0) of this model as N, in which the sequence converges to a probability measure μ on the associated classical phase space X2. This measure is a symmetric convex sum of two Dirac measures related by the underlying 2-symmetry of the model, and as such the classical limit exhibits spontaneous symmetry breaking, too. Our proof of convergence is heavily based on Perelomov-style coherent spin states and at some stage it relies on (quite strong) numerical evidence. Hence the proof is not completely analytic, but somewhat hybrid.

    AMSC: 46L65, 81R30, 82B20

    References

    • 1. A. E. Allahverdyana, R. Balian and Th. M. Nieuwenhuizen , Understanding quantum measurement from the solution of dynamical models, Phys. Rep. 525 (2013) 1–166. Crossref, Web of Science, ADSGoogle Scholar
    • 2. N. L. Balazs and B. K. Jennings , Wigner’s function and other distribution functions in mock phase spaces, Phys. Rep. 104 (1984) 347–391. Crossref, Web of Science, ADSGoogle Scholar
    • 3. I. Bengtsson and K. Zyczkowski , Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, 2006). CrossrefGoogle Scholar
    • 4. P. Bona , The dynamics of a class of mean-field theories, J. Math. Phys. 29 (1988) 2223–2235. Crossref, Web of Science, ADSGoogle Scholar
    • 5. M. Bordemann, E. Meinrenken and M. Schlichenmaier , Toeplitz quantization of Kähler manifolds and gl(N), N limits, Comm. Math. Phys. 165 (1994) 281–296. Crossref, Web of Science, ADSGoogle Scholar
    • 6. O. Bratteli and D. W. Robinson , Operator Algebras and Quantum Statistical Mechanics. Vol. II: Equilibrium States, Models in Statistical Mechanics (Springer, 1981). CrossrefGoogle Scholar
    • 7. E. Brüning, H. Mäkelä, A. Messina and F. Petruccione , Parametrizations of density matrices, J. Modern Opt. 59 (2011) 1–20. Crossref, Web of Science, ADSGoogle Scholar
    • 8. L. Chayes, N. Crawford, D. Ioffe and A. Levit , The phase diagram of the quantum Curie–Weiss model, J. Stat. Phys. 133 (2008) 131–149. Crossref, Web of Science, ADSGoogle Scholar
    • 9. J. Dixmier , C*-Algebras (North-Holland, 1977). Google Scholar
    • 10. N. G. Duffield and R. F. Werner , Local dynamics of mean-field quantum systems, Helv. Phys. Acta 65 (1992) 1016–1054. Google Scholar
    • 11. S. Friedli and Y. Velenik , Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction (Cambridge University Press, 2017). CrossrefGoogle Scholar
    • 12. J. Grabowski, M. Kuś and G. Marmo , Geometry of quantum systems: Density states and entanglement, J. Phys. A: Math. Gen. 38 (2005) 10217–10244. Crossref, ADSGoogle Scholar
    • 13. M. Hillery, R. F. O’Connell, M. O. Scully and E. P. Wigner , Distribution functions in physics: Fundamentals, Phys. Rep. 106 (1984) 121–167. Crossref, Web of Science, ADSGoogle Scholar
    • 14. D. Ioffe and A. Levit , Ground states for mean field models with a transverse component, J. Stat. Phys. 151 (2013) 1140–1161. Crossref, Web of Science, ADSGoogle Scholar
    • 15. N. P. Landsman , Mathematical Topics Between Classical and Quantum Theory (Springer, 1998). CrossrefGoogle Scholar
    • 16. N. P. Landsman , Foundations of Quantum Theory: From Classical Concepts to Operator Algebras (Springer, 2017); Open Access at http://www.springer.com/gp/book/9783319517766. CrossrefGoogle Scholar
    • 17. J. E. Marsden and T. S. Ratiu , Introduction to Mechanics and Symmetry (Springer, 1994). CrossrefGoogle Scholar
    • 18. V. Moretti , Spectral Theory and Quantum Mechanics, 2nd edn. (Springer, 2018). Google Scholar
    • 19. A. M. Perelomov , Coherent states for arbitrary Lie groups, Comm. Math Phys. 26 (1972) 222–236. Crossref, Web of Science, ADSGoogle Scholar
    • 20. M. J. Pflaum , Analytic and Geometric Study of Stratified Spaces (Springer, 2001). Google Scholar
    • 21. G. A. Raggio and R. F. Werner , Quantum statistical mechanics of general mean field systems, Helv. Phys. Acta 62 (1989) 980–1003. Google Scholar
    • 22. M. A. Rieffel , Deformation quantization of Heisenberg manifolds, Comm. Math. Phys. 121 (1989) 531–562. Crossref, Web of Science, ADSGoogle Scholar
    • 23. M. A. Rieffel , Quantization and C-algebras, Contemp. Math. 167 (1994) 67–97. Google Scholar
    • 24. B. Simon , The Statistical Mechanics of Lattice Gases. Vol. I (Princeton University Press, 1993). CrossrefGoogle Scholar
    • 25. M. Takesaki , Theory of Operator Algebras I, 2nd edn. (Springer, 2002). Google Scholar
    • 26. C. J. F. van de Ven, Properties of quantum spin systems and their classical limit, M.Sc. Thesis, Radboud University (2018); https://www.math.ru.nl/landsman/ Chris2018.pdf. Google Scholar
    • 27. C. J. F. van de Ven, G. C. Groenenboom, R. Reuvers and N. P. Landsman, Quantum spin systems versus Schrödinger operators: A case study in spontaneous symmetry breaking, arXiv:1811.12109 (v3); to appear in SciPost. Google Scholar
    • 28. H. Weyl , Gruppentheorie und Quantenmechanik (Hirzel, 1928). Google Scholar