World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

On the classification of finite quasi-quantum groups

    https://doi.org/10.1142/S0129055X17300035Cited by:1 (Source: Crossref)

    We give an overview of the classification results obtained so far for finite quasi-quantum groups over an algebraically closed field of characteristic zero. The main classification results on basic quasi-Hopf algebras are obtained by Etingof, Gelaki, Nikshych, and Ostrik, and on dual quasi-Hopf algebras by Huang, Liu and Ye. The objective of this survey is to help in understanding the tools and methods used for the classification.

    AMSC: 16T15, 57T05, 16G20

    References

    • 1. V. G. Drinfel’d, Quasi-Hopf algebras, Leningrad Math. J. 1 (1990) 1419–1457. Google Scholar
    • 2. S. Majid, Quasi-quantum groups as internal symmetries of topological quantum field theories, Lett. Math. Phys. 22 (1991) 83–90. Crossref, ISI, ADSGoogle Scholar
    • 3. D. Altschuler and A. Coste, Quasi-quantum groups, knots, three-manifolds, and topological field theory, Comm. Math. Phys. 150 (1992) 83–107. Crossref, ISI, ADSGoogle Scholar
    • 4. S. Majid, Tannaka–Krein theorem for quasi-Hopf algebras, in Deformation Theory and Quantum Groups with Applications to Mathematical Physics Amherst, MA, 1990, Contemp. Math., Vol. 134 (Amer. Math. Soc., 1992), pp. 219–232. CrossrefGoogle Scholar
    • 5. S. Shnider and S. Sternberg, Quantum Groups. From Coalgebras to Drinfeld Algebras. A Guided Tour, Graduate Texts in Mathematical Physics, II (International Press, Cambridge, MA, 1993). Google Scholar
    • 6. P. Etingof and V. Ostrik, Finite tensor categories, Mosc. Math. J. 4(3) (2004) 627–654. Crossref, ISIGoogle Scholar
    • 7. P. Etingof and S. Gelaki, Finite-dimensional quasi-Hopf algebras with radical of codimension 2, Math. Res. Lett. 11 (2004) 685–696. Crossref, ISIGoogle Scholar
    • 8. P. Etingof and S. Gelaki, On radically graded finite dimensional quasi-Hopf algebras, Mosc. Math. J. 5 (2005) 371–378. Crossref, ISIGoogle Scholar
    • 9. P. Etingof and S. Gelaki, Liftings of graded quasi-Hopf algebras with radical of prime codimension, J. Pure Appl. Algebra 205 (2006) 310–322. Crossref, ISIGoogle Scholar
    • 10. P. Etingof, S. Gelaki, D. Nikshych and V. Ostrik, Tensor Categories, Mathematical Surveys and Monographs, Vol. 205 (American Mathematical Society, Providence, RI, 2015). CrossrefGoogle Scholar
    • 11. P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, Ann. of Math. 162 (2005) 581–642. Crossref, ISIGoogle Scholar
    • 12. S. Gelaki, Basic quasi-Hopf algebras of dimension n3, J. Pure Appl. Algebra 198 (2005) 165–174. Crossref, ISIGoogle Scholar
    • 13. H.-L. Huang, Quiver approaches to quasi-Hopf algebras, J. Math. Phys. 50(4) (2009) 043501. Crossref, ISIGoogle Scholar
    • 14. M. E. Sweedler, Hopf Algebras (Benjamin, New York, 1969). Google Scholar
    • 15. C. Cibils and M. Rosso, Hopf quivers, J. Algebra, 254(2) (2002) 241–251. Crossref, ISIGoogle Scholar
    • 16. N. Andruskiewitsch and H.-J. Schneider, On the classification of finite-dimensional pointed Hopf algebras, Ann. of Math. 171 (2010) 375–417. Crossref, ISIGoogle Scholar
    • 17. E. Taft, The order of the antipode of finite-dimensional Hopf algebras, Proc. Natl. Acad. Sci. USA 68 (1971) 2631–2633. Crossref, ISI, ADSGoogle Scholar
    • 18. N. Andruskiewitsch and H.-J. Schneider, Finite quantum groups and Cartan matrices, Adv. Math. 154(1) (2000) 1–45. Crossref, ISIGoogle Scholar
    • 19. I. E. Angiono, Basic quasi-Hopf algebras over cyclic groups, Adv. Math. 225(6) (2010) 3545–3575. Crossref, ISIGoogle Scholar
    • 20. H.-L. Huang, From projective representations to quasi-quantum groups, Sci. China Math. 55(10) (2012) 2067–2080. Crossref, ISIGoogle Scholar
    • 21. F. Van Oystaeyen and P. Zhang, Quiver Hopf algebras, J. Algebra 280 (2004) 577–589. Crossref, ISIGoogle Scholar
    • 22. S. Shnider and S. Sternberg, The cobar resolution and a restricted deformation theory for Drinfeld algebras, J. Algebra 169 (1994) 343–366. Crossref, ISIGoogle Scholar
    • 23. A. Yu. Drozd, Tame and wild matrix problems, in Representation Theory II, Lecture Notes in Math., Vol. 832 (Springer, 1980), pp. 242–258. CrossrefGoogle Scholar
    • 24. H.-L. Huang, G. Liu and Yu Ye, Quivers, quasi-quantum groups and finite tensor categories, Comm. Math. Phys. 303(3) (2011) 595–612. Crossref, ISI, ADSGoogle Scholar
    • 25. H.-L. Huang and G. Liu, On coquasitriangular pointed Majid algebras, Comm. Algebra 40 (2012) 3609–3621. Crossref, ISIGoogle Scholar
    • 26. H.-L. Huang, G. Liu and Y. Ye, Graded elementary quasi-Hopf algebras of tame representation type, Israel Math. J. 209 (2015) 157–186. Crossref, ISIGoogle Scholar
    • 27. M. Balodi, H.-L. Huang and S. D. Kumar, Finite Majid algebras over Klein group, Comm. Algebra 42 (2014) 4962–4983. Crossref, ISIGoogle Scholar
    • 28. H.-L. Huang and Y. Yang, Quasi-quantum planes and quasi-quantum groups of dimension p3 and p4, Proc. Amer. Math. Soc. 143(10) (2015) 4245–4260. Crossref, ISIGoogle Scholar
    • 29. S. E. Akrami and S. Majid, Braided cyclic cocycles and nonassociative geometry, J. Math. Phys. 45(10) (2004) 3883–3911. Crossref, ISI, ADSGoogle Scholar
    • 30. S. Majid, Gauge theory on nonassociative spaces, J. Math. Phys. 46 (2005) 103519. Crossref, ISI, ADSGoogle Scholar