World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

The ground state construction of bilayer graphene

    We consider a model of half-filled bilayer graphene, in which the three dominant Slonczewski–Weiss–McClure hopping parameters are retained, in the presence of short-range interactions. Under a smallness assumption on the interaction strength U as well as on the inter-layer hopping ϵ, we construct the ground state in the thermodynamic limit, and prove that the pressure and two-point Schwinger function, away from its singularities, are analytic in U, uniformly in ϵ. The interacting Fermi surface is degenerate, and consists of eight Fermi points, two of which are protected by symmetries, while the locations of the other six are renormalized by the interaction, and the effective dispersion relation at the Fermi points is conical. The construction reveals the presence of different energy regimes, where the effective behavior of correlation functions changes qualitatively. The analysis of the crossover between regimes plays an important role in the proof of analyticity and in the uniform control of the radius of convergence. The proof is based on a rigorous implementation of fermionic renormalization group methods, including determinant estimates for the renormalized expansion.

    AMSC: 81T16, 82B10, 82B28, 82D25

    References

    • 1. K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva and A. Firsov, Electric field effect in atomically thin carbon films, Science 306 (2004) 666–669. Crossref, ISI, ADSGoogle Scholar
    • 2. A. Geim, Random walk to graphene, Nobel lecture (2010). Google Scholar
    • 3. K. Novoselov, A. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos and A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene, Nature 438(10) (2005) 197–200. Crossref, ADSGoogle Scholar
    • 4. Y. Zhang, Y. W. Tan, H. Stormer and P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene, Nature 438(10) (2005) 201–204. Crossref, ADSGoogle Scholar
    • 5. A. Geim and K. Novoselov, The rise of graphene, Nat. Mat. 6 (2007) 183–191. Crossref, ISI, ADSGoogle Scholar
    • 6. P. Wallace, The band theory of graphite, Phys. Rev. 71(9) (1947) 622–634. Crossref, ISI, ADSGoogle Scholar
    • 7. A. Giuliani and V. Mastropietro, The two-dimensional Hubbard model on the honey-comb lattice, Comm. Math. Phys. 293 (2010) 301–364. Crossref, ISI, ADSGoogle Scholar
    • 8. A. Giuliani, V. Mastropietro and M. Porta, Absence of interaction corrections in the optical conductivity of graphene, Phys. Rev. B 83 (2011) 195401. Crossref, ADSGoogle Scholar
    • 9. A. Giuliani, V. Mastropietro and M. Porta, Universality of conductivity in interacting graphene, Comm. Math. Phys. 311(2) (2012) 317–355. Crossref, ISI, ADSGoogle Scholar
    • 10. G. Benfatto and G. Gallavotti, Perturbation theory of the Fermi surface in a quantum liquid — A general quasiparticle formalism and one-dimensional systems, J. Statist. Phys. 59(3–4) (1990) 541–664. Crossref, ISI, ADSGoogle Scholar
    • 11. A. Giuliani, V. Mastropietro and M. Porta, Lattice gauge theory model for graphene, Phys. Rev. B 82 (2010) 121418(R). Crossref, ADSGoogle Scholar
    • 12. A. Giuliani, V. Mastropietro and M. Porta, Lattice quantum electrodynamics for graphene, Ann. Phys. 327(2) (2011) 461–511. Crossref, ISI, ADSGoogle Scholar
    • 13. J. Slonczewski and P. Weiss, Band structure of graphite, Phys. Rev. 109 (1958) 272–279. Crossref, ISI, ADSGoogle Scholar
    • 14. J. McClure, Band structure of graphite and de Haas–van Alphen effect, Phys. Rev. 108 (1957) 612–618. Crossref, ISI, ADSGoogle Scholar
    • 15. K. Novoselov, E. McCann, S. Morozov, V. Fal’ko, M. Katsnelson, U. Zeitler, D. Jiang, F. Schedin and A. Geim, Unconventional quantum Hall effect and Berry’s phase of π in bilayer graphene, Nat. Phys. 2 (2006) 177–180. Crossref, ISI, ADSGoogle Scholar
    • 16. O. Vafek, Interacting Fermions on the honeycomb bilayer: From weak to strong coupling, Phys. Rev. B 82 (2010) 205106. Crossref, ADSGoogle Scholar
    • 17. O. Vafek and K. Yang, Many-body instability of Coulomb interacting bilayer graphene: Renormalization group approach, Phys. Rev. B 81 (2010) 041401. Crossref, ISI, ADSGoogle Scholar
    • 18. R. Throckmorton and O. Vafek, Fermions on bilayer graphene: Symmetry breaking for B = 0 and ν = 0, Phys. Rev. B 86 (2012) 115447. Crossref, ADSGoogle Scholar
    • 19. E. McCann and V. Fal’ko, Landau-level degeneracy and Quantum Hall Effect in a graphite bilayer, Phys. Rev. Lett. 86 (2006) 086805. CrossrefGoogle Scholar
    • 20. V. Cvetkovic, R. Throckmorton and O. Vafek, Electronic multicriticality in bilayer graphene, Phys. Rev. B 86 (2012) 075467. Crossref, ADSGoogle Scholar
    • 21. B. Partoens and F. Peeters, From graphene to graphite: Electronic structure around the K point, Phys. Rev. B 74 (2006) 075404. Crossref, ISI, ADSGoogle Scholar
    • 22. G. Benfatto, A. Giuliani and V. Mastropietro, Fermi liquid behavior in the 2D Hubbard model, Ann. Henri Poincaré 7 (2006) 809–898. Crossref, ISI, ADSGoogle Scholar
    • 23. M. Dresselhaus and G. Dresselhaus, Intercalation compounds of graphite, Adv. Phys. 51(1) (2002) 1–186. Crossref, ISI, ADSGoogle Scholar
    • 24. W. Toy, M. Dresselhaus and G. Dresselhaus, Minority carriers in graphite and the H-point magnetoreflection spectra, Phys. Rev. B 15 (1997) 4077–4090. Crossref, ADSGoogle Scholar
    • 25. A. Misu, E. Mendez and M. S. Dresselhaus, Near infrared reflectivity of graphite under hydrostatic pressure, J. Phys. Soc. Japan 47(1) (1979) 199–207. Crossref, ADSGoogle Scholar
    • 26. R. Doezema, W. Datars, H. Schaber and A. Van Schyndel, Far-infrared magnetospectroscopy of the Landau-level structure in graphite, Phys. Rev. B 19(8) (1979) 4224–4230. Crossref, ISI, ADSGoogle Scholar
    • 27. L. Zhang, Z. Li, D. Basov, M. Fogler, Z. Hao and M. Martin, Determination of the electronic structure of bilayer graphene from infrared spectroscopy, Phys. Rev. B 78 (2008) 235408. Crossref, ISI, ADSGoogle Scholar
    • 28. L. Malard, J. Nilsson, D. Elias, J. Brant, F. Plentz, E. Alves, A. Castro Neto and M. Pimenta, Probing the electronic structure of bilayer graphene by Raman scattering, Phys. Rev. B 76 (2007) 201401. Crossref, ISI, ADSGoogle Scholar
    • 29. L. Lu, Constructive analysis of two dimensional Fermi systems at finite temperature, PhD thesis, Institute for Theoretical Physics, Heidelberg (2013); http://www.ub.uni-heidelberg.de/archiv/14947. Google Scholar
    • 30. W. Pedra and M. Salmhofer, Determinant bounds and the Matsubara UV problem of many-fermion systems, Comm. Math. Phys. 282(3) (2008) 797–818. Crossref, ISI, ADSGoogle Scholar
    • 31. D. Brydges and P. Federbush, A new form of the Mayer expansion in classical statistical mechanics, J. Math. Phys. 19 (1978) 2064–2067. Crossref, ISI, ADSGoogle Scholar
    • 32. G. Battle and P. Federbush, A note on cluster expansions, tree graph identities, extra 1/N factors!!!, Lett. Math. Phys. 8 (1984) 55–57. Crossref, ISI, ADSGoogle Scholar
    • 33. D. Brydges and T. Kennedy, Mayer expansions and the Hamilton–Jacobi equation, J. Statist. Phys. 48(1–2) (1987) 19–49. Crossref, ISI, ADSGoogle Scholar
    • 34. A. Abdesselam and V. Rivasseau, Explicit Fermionic tree expansions, Lett. Math. Phys. 44(1) (1998) 77–88. Crossref, ISIGoogle Scholar
    • 35. G. Gallavotti and F. Nicolò, Renormalization theory for four dimensional scalar fields, I, Comm. Math. Phys. 100 (1985) 545–590. Crossref, ISI, ADSGoogle Scholar
    • 36. G. Gallavotti and F. Nicolò, Renormalization theory for four dimensional scalar fields, II, Comm. Math. Phys. 101 (1985) 247–282. Crossref, ISI, ADSGoogle Scholar
    • 37. G. Gentile and V. Mastropietro, Renormalization group for one-dimensional fermions — A review on mathematical results, Phys. Rep. 352 (2001) 273–437. Crossref, ISI, ADSGoogle Scholar
    • 38. A. Giuliani, The ground state construction of the two-dimensional Hubbard model on the honeycomb lattice, in Quantum Theory from Small to Large Scales, Lecture Notes of the Les Houches Summer School, Vol. 95 (Oxford University Press, 2010), pp. 553–615. Google Scholar
    • 39. S. Trickey, F. Müller-Plathe, G. Diercksen and J. Boettger, Interplanar binding and lattice relaxation in a graphite dilayer, Phys. Rev. B 45 (1992) 4460–4468. Crossref, ISI, ADSGoogle Scholar
    • 40. G. Benfatto and G. Gallavotti, Renormalization Group (Princeton University Press, 1995). CrossrefGoogle Scholar
    • 41. M. Salmhofer, Renormalization: An Introduction (Springer Science & Business Media, 2013). Google Scholar
    • 42. G. Benfatto and V. Mastropietro, On the density–density critical indices in interacting Fermi systems, Comm. Math. Phys. 231(1) (2002) 97–134. Crossref, ISI, ADSGoogle Scholar
    • 43. J. Feldman, H. Knörrer and E. Trubowitz, A two dimensional Fermi liquid. Part 1: Overview, Comm. Math. Phys. 247(1) (2004) 1–47. Crossref, ISI, ADSGoogle Scholar
    • 44. J. Feldman, H. Knörrer and E. Trubowitz, A two dimensional Fermi liquid. Part 2: Convergence, Comm. Math. Phys. 247(1) (2004) 49–111. Crossref, ISI, ADSGoogle Scholar
    • 45. J. Feldman, H. Knörrer and E. Trubowitz, A two dimensional Fermi liquid. Part 3: The Fermi surface, Comm. Math. Phys. 247(1) (2004) 113–177. Crossref, ISI, ADSGoogle Scholar
    • 46. V. Mastropietro, Conductivity between Luttinger liquids: Coupled chains and bilayer graphene, Phys. Rev. B 84 (2011) 035109. Crossref, ISI, ADSGoogle Scholar