Temporal Lorentzian spectral triples
Abstract
We present the notion of temporal Lorentzian spectral triple which is an extension of the notion of pseudo-Riemannian spectral triple with a way to ensure that the signature of the metric is Lorentzian. A temporal Lorentzian spectral triple corresponds to a specific 3 + 1 decomposition of a possibly noncommutative Lorentzian space. This structure introduces a notion of global time in noncommutative geometry. As an example, we construct a temporal Lorentzian spectral triple over a Moyal–Minkowski spacetime. We show that, when time is commutative, the algebra can be extended to unbounded elements. Using such an extension, it is possible to define a Lorentzian distance formula between pure states with a well-defined noncommutative formulation.
References
-
A. Connes , Noncommutative Geometry ( Academic Press , San Diego , 1994 ) . Google Scholar -
A. Connes and M. Marcolli , Noncommutative Geometry, Quantum Fields and Motives ,Colloquium Publications 55 ( Amer. Math. Soc. Providence , 2008 ) . Google Scholar -
J. M. Gracia-Bondía , J. C. Várilly and H. Figueroa , Elements of Noncommutative Geometry ( Birkhäuser , Boston , 2001 ) . Crossref, Google Scholar - Comm. Math. Phys. 182 , 155 ( 1996 ) , arXiv:hep-th/9603053 . Crossref, Web of Science, ADS, Google Scholar
- J. Noncommutative Geom. 7(1), 1 (2013), arXiv:0810.2088. Crossref, Web of Science, Google Scholar
- Adv. Theor. Math. Phys. 11 , 991 ( 2007 ) , arXiv:hep-th/0610241 . Crossref, Web of Science, Google Scholar
- Comm. Math. Phys. 187 , 471 ( 1997 ) , arXiv:gr-qc/9605068 . Crossref, Web of Science, ADS, Google Scholar
- Int. J. Mod. Phys. A 13 , 2693 ( 1998 ) , arXiv:gr-qc/9609050 . Link, Web of Science, ADS, Google Scholar
- Int. J. Mod. Phys. B 14 , 2359 ( 2000 ) , arXiv:hep-th/0005260 . Link, Web of Science, ADS, Google Scholar
- Mod. Phys. Lett. A 16(6), 291 (2001), arXiv:math-ph/0105006. Link, Web of Science, ADS, Google Scholar
- J. Math. Phys. 43 , 818 ( 2002 ) , arXiv:math-ph/0012012 . Crossref, Web of Science, ADS, Google Scholar
- J. Geom. Phys. 56 , 175 ( 2006 ) , arXiv:math-ph/0110001 . Crossref, Web of Science, ADS, Google Scholar
- J. Math. Phys. 45 , 537 ( 2004 ) , arXiv:math-ph/0310009 . Crossref, Web of Science, ADS, Google Scholar
- Class. Quant. Grav. 21 , 5299 ( 2004 ) , arXiv:gr-qc/0405057 . Crossref, Web of Science, ADS, Google Scholar
- M. Paschke and A. Sitarz, Equivariant Lorentzian spectral triples, preprint , arXiv:math-ph/0611029 . Google Scholar
- J. Geom. Phys. 73 , 37 ( 2013 ) , arXiv:1207.2112 . Crossref, Web of Science, ADS, Google Scholar
- Class. Quantum Grav. 30 , 135007 ( 2013 ) , arXiv:1212.5171 . Crossref, Web of Science, ADS, Google Scholar
- SIGMA 6 , 064 ( 2010 ) , arXiv:1003.5651 . Google Scholar
-
H. Baum , Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten ,Teubner-Text zur Mathematik 41 ( Teubner , 1981 ) . Google Scholar - H. Baum, A remark on the spectrum of the Dirac operator on a pseudo-Riemannian spin manifolds, SFB288-preprint 136 (1994) . Google Scholar
-
J. Bognar , Indefinite Inner Product Spaces ( Springer-Verlag , Berlin , 1974 ) . Crossref, Google Scholar - Trans. Amer. Math. Soc. 285 , 379 ( 1984 ) . Crossref, Web of Science, Google Scholar
- Proc. Amer. Math. Soc. 76 , 145 ( 1979 ) . Crossref, Web of Science, Google Scholar
- Comm. Math. Phys. 246 , 569 ( 2004 ) , arXiv:hep-th/0307241 . Crossref, Web of Science, ADS, Google Scholar
- Comm. Math. Phys. 243 , 461 ( 2003 ) , arXiv:gr-qc/0306108 . Crossref, Web of Science, ADS, Google Scholar
- Comm. Math. Phys. 257 , 43 ( 2005 ) , arXiv:gr-qc/0401112 . Crossref, Web of Science, ADS, Google Scholar
- Lett. Math. Phys. 77 , 183 ( 2006 ) , arXiv:gr-qc/0512095 . Crossref, Web of Science, ADS, Google Scholar
- N. Franco, Lorentzian approach to noncommutative geometry, Ph.D. thesis, Presses Universitaires de Namur (2011) , arXiv:1108.0592 . Google Scholar
- J. Math. Phys. 41 , 7122 ( 2000 ) , arXiv:gr-qc/9803090 . Crossref, Web of Science, ADS, Google Scholar
- Rev. Math. Phys. 15 , 1171 ( 2003 ) , arXiv:gr-qc/0203095 . Link, Web of Science, ADS, Google Scholar
- J. Geom. Phys. 59(7), 861 (2009), arXiv:math/0804.3551. Crossref, Web of Science, ADS, Google Scholar
-
J.-P. Antoine and C. Trapani , Partial Inner Product Spaces: Theory and Applications ,Lecture Notes in Mathematics 1986 ( Springer-Verlag , Berlin , 2010 ) . Google Scholar - J. Math. Phys. 29 , 880 ( 1988 ) . Crossref, Web of Science, ADS, Google Scholar
-
J. K. Beem , P. E. Eherlich and K. L. Easley , Global Lorentzian Geometry , 2nd edn. ,Monographs and Textbooks in Pure and Applied Mathematics 202 ( Marcel Dekker , New York , 1996 ) . Google Scholar -
O. Bratteli and D. W. Robinson , Operator Algebras and Quantum Statistical Mechanics. 1, C*- and W*-Algebras Symmetry Groups Decomposition of States , 2nd edn. ( Springer , New York , 1987 ) . Google Scholar