World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

LOCALIZED ENDOMORPHISMS IN KITAEV'S TORIC CODE ON THE PLANE

    https://doi.org/10.1142/S0129055X1100431XCited by:24 (Source: Crossref)

    We consider various aspects of Kitaev's toric code model on a plane in the C*-algebraic approach to quantum spin systems on a lattice. In particular, we show that elementary excitations of the ground state can be described by localized endomorphisms of the observable algebra. The structure of these endomorphisms is analyzed in the spirit of the Doplicher–Haag–Roberts program (specifically, through its generalization to infinite regions as considered by Buchholz and Fredenhagen). Most notably, the statistics of excitations can be calculated in this way. The excitations can equivalently be described by the representation theory of , i.e. Drinfel'd's quantum double of the group algebra of ℤ2.

    AMSC: 81T05, 81T25, 18D10

    References