World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

RIGOROUS STEPS TOWARDS HOLOGRAPHY IN ASYMPTOTICALLY FLAT SPACETIMES

    https://doi.org/10.1142/S0129055X0600270XCited by:64 (Source: Crossref)

    Scalar QFT on the boundary ℑ+ at future null infinity of a general asymptotically flat 4D spacetime is constructed using the algebraic approach based on Weyl algebra associated to a BMS-invariant symplectic form. The constructed theory turns out to be invariant under a suitable strongly-continuous unitary representation of the BMS group with manifest meaning when the fields are interpreted as suitable extensions to ℑ+ of massless minimally coupled fields propagating in the bulk. The group theoretical analysis of the found unitary BMS representation proves that such a field on ℑ+ coincides with the natural wave function constructed out of the unitary BMS irreducible representation induced from the little group Δ, the semidirect product between SO(2) and the two-dimensional translations group. This wave function is massless with respect to the notion of mass for BMS representation theory. The presented result proposes a natural criterion to solve the long-standing problem of the topology of BMS group. Indeed the found natural correspondence of quantum field theories holds only if the BMS group is equipped with the nuclear topology rejecting instead the Hilbert one. Eventually, some theorems towards a holographic description on ℑ+ of QFT in the bulk are established at level of C*-algebras of fields for asymptotically flat at null infinity spacetimes. It is proved that preservation of a certain symplectic form implies the existence of an injective *-homomorphism from the Weyl algebra of fields of the bulk into that associated with the boundary ℑ+. Those results are, in particular, applied to 4D Minkowski spacetime where a nice interplay between Poincaré invariance in the bulk and BMS invariance on the boundary at null infinity is established at the level of QFT. It arises that, in this case, the *-homomorphism admits unitary implementation and Minkowski vacuum is mapped into the BMS invariant vacuum on ℑ+.

    AMSC: 81T20, 81T05, 83C30, 83C47, 81R10, 22D30

    References