RIGOROUS STEPS TOWARDS HOLOGRAPHY IN ASYMPTOTICALLY FLAT SPACETIMES
Abstract
Scalar QFT on the boundary ℑ+ at future null infinity of a general asymptotically flat 4D spacetime is constructed using the algebraic approach based on Weyl algebra associated to a BMS-invariant symplectic form. The constructed theory turns out to be invariant under a suitable strongly-continuous unitary representation of the BMS group with manifest meaning when the fields are interpreted as suitable extensions to ℑ+ of massless minimally coupled fields propagating in the bulk. The group theoretical analysis of the found unitary BMS representation proves that such a field on ℑ+ coincides with the natural wave function constructed out of the unitary BMS irreducible representation induced from the little group Δ, the semidirect product between SO(2) and the two-dimensional translations group. This wave function is massless with respect to the notion of mass for BMS representation theory. The presented result proposes a natural criterion to solve the long-standing problem of the topology of BMS group. Indeed the found natural correspondence of quantum field theories holds only if the BMS group is equipped with the nuclear topology rejecting instead the Hilbert one. Eventually, some theorems towards a holographic description on ℑ+ of QFT in the bulk are established at level of C*-algebras of fields for asymptotically flat at null infinity spacetimes. It is proved that preservation of a certain symplectic form implies the existence of an injective *-homomorphism from the Weyl algebra of fields of the bulk into that associated with the boundary ℑ+. Those results are, in particular, applied to 4D Minkowski spacetime where a nice interplay between Poincaré invariance in the bulk and BMS invariance on the boundary at null infinity is established at the level of QFT. It arises that, in this case, the *-homomorphism admits unitary implementation and Minkowski vacuum is mapped into the BMS invariant vacuum on ℑ+.
References
- G. 't Hooft, Dimensional reduction in quantum gravity , arXiv:gr-qc/9310026 . Google Scholar
- Rev. Mod. Phys. 74, 825 (2002), arXiv:hep-th/0203101. Web of Science, ADS, Google Scholar
- Phys. Rept. 323, 183 (2000), arXiv:hep-th/9905111. Web of Science, ADS, Google Scholar
- J. de Boer, L. Maoz and A. Naqvi, Some aspects of the AdS/CFT correspondence , arXiv:hep-th/0407212 . Google Scholar
- Annas. Henri Poincaré 1, 607 (2000), arXiv:hep-th/9905179. Web of Science, ADS, Google Scholar
- Phys. Lett. B 493, 383 (2000), arXiv:hep-th/0003120. Web of Science, ADS, Google Scholar
- Nucl. Phys. B 674, 553 (2003), arXiv:hep-th/0306142. Web of Science, ADS, Google Scholar
- Nucl. Phys. B 665, 545 (2003), arXiv:hep-th/0303006. Web of Science, ADS, Google Scholar
- Nucl. Phys. B 689, 257 (2004), arXiv:hep-th/0401220. Web of Science, ADS, Google Scholar
- Class. Quant. Grav. 21, 5655 (2004), arXiv:hep-th/0312186. Web of Science, ADS, Google Scholar
- J. High Energy Phys. 0411, 011 (2004), arXiv:hep-th/0410026. ADS, Google Scholar
- Phys. Lett. B 615, 291 (2005), arXiv:hep-th/0412142. Web of Science, ADS, Google Scholar
- J. Math. Phys. 36, 4984 (1995), arXiv:gr-qc/9502028. Web of Science, ADS, Google Scholar
- J. Math. Phys. 36, 4975 (1995), arXiv:gr-qc/9502025. Web of Science, ADS, Google Scholar
- J. Math. Phys. 45, 230 (2004), arXiv:hep-th/0304111. Web of Science, ADS, Google Scholar
- J. Math. Phys. 45, 257 (2004), arXiv:hep-th/0307021. Web of Science, ADS, Google Scholar
- J. Math. Phys. 46, 062303 (2005), hep-th/0407256. Web of Science, Google Scholar
- J. Math. Phys. 19(10), 2216 (1978). Web of Science, ADS, Google Scholar
-
R. M. Wald , General Relativity ( Chicago University Press , Chicago , 1984 ) . Google Scholar - Phys. Rev. Lett. 10, 66 (1963). Web of Science, ADS, Google Scholar
- Group Theory in Non-Linear Problems, ed.
A. O. Barut (Reidel, Dordrecht, 1974) p. 97. Google Scholar , - Asymptotic Structure of Spacetime , eds.
P. Esposito and L. Witten ( Plenum , New York , 1977 ) . Google Scholar , - Proc. R. Lond. A 376, 585 (1981). Web of Science, ADS, Google Scholar
- Phys. Rev. 128, 2851 (1962). Web of Science, Google Scholar
- Proc. R. Soc. London A 330, 517 (1972). Web of Science, ADS, Google Scholar
- Proc. R. Soc. London A 333, 317 (1973). Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 33, 547 (1974). Web of Science, ADS, Google Scholar
- Phys. Rev. Lett. 32, 565 (1974). Web of Science, ADS, Google Scholar
- Proc. R. Soc. London A 343, 489 (1975). Web of Science, ADS, Google Scholar
-
R. Penrose and W. Rindler , Spinor and Twistor Methods in Space-Time Geometry ,Spinors and Space-Time 2 ( Cambridge University Press , 1986 ) . Google Scholar - Phys. Rev. Lett. 46, 573 (1981). Web of Science, ADS, Google Scholar
-
R. M. Wald , Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics ( Chicago University Press , Chicago , 1994 ) . Google Scholar -
O. Bratteli and D. W. Robinson , Operator Algebras and Quantum Statistical Mechanics 2 ( Springer , Berlin, Germany , 1996 ) . Google Scholar - Phys. Rept. 207, 49 (1991). Web of Science, ADS, Google Scholar
- Proc. R. Soc. London A 358, 141 (1978). Web of Science, ADS, Google Scholar
- Proc. R. Soc. Lond. A 457, 453 (2001). Web of Science, ADS, Google Scholar
- Relativity, Groups and Topology II, eds.
B. S. DeWitt and R. Stora (Elsevier/Amsterdam, New Yorks, 1984) pp. 1007–1057. Google Scholar , - Proc. Roy. Soc. London Ser. A 269, 21 (1962). Web of Science, ADS, Google Scholar
-
I. M. Gel'fand , Generalized Functions: Integral Geometry and Representation Theory 5 ( Academic Press , 1996 ) . Google Scholar -
I. M. Gel'fand , Generalized functions: Application of Harmonic Analysis 4 ( Acadmic Press , 1966 ) . Google Scholar - J. Math. Phys. 13, 1837 (1972). Web of Science, Google Scholar
- Rept. Math. Phys. 11, 259 (1977). Web of Science, ADS, Google Scholar
-
D. J. Simms , Lie Groups and Quantum Mechanics ( Springer-Verlag , 1968 ) . Google Scholar -
A. O. Barut and R. Raczka , Theory of Group Representation and Applications , 2nd edn. ( World Scientific , 1986 ) . Link, Google Scholar - Ann. Henri Poincaré 5, 607 (2004). Web of Science, ADS, Google Scholar
-
G. W. Mackey , Unitary Group Representations in Physics, Probability and Number Theory ( Addison-Wesley Publishing , 1989 ) . Google Scholar -
N. Bourbaki , Mesure de Haar ( Hermann , 1963 ) . Google Scholar - Rept. Math. Phys. 21, 391 (1986). ADS, Google Scholar
- Rept. Math. Phys. 11, 279 (1977). Web of Science, ADS, Google Scholar
- Quart. J. Math. Oxford Ser. 21, 101 (1970). Web of Science, ADS, Google Scholar
- Comm. Math. Phys. 37, 331 (1974). Web of Science, ADS, Google Scholar
- J. Math. Phys. 12, 462 (1971). Web of Science, ADS, Google Scholar
- Ann. of Math. (2) 40, 149 (1939). Web of Science, ADS, Google Scholar
- Phys. Rev. D 55, 1971 (1997). Web of Science, Google Scholar
S. Frittelli and E. T. Newman , On Einstein's Path (Springer, New York, 1999) p. 227. Google Scholar-
S. A. Fulling , Aspects of Quantum Field Theory in Curved Space-Time ( Cambridge University Press , Cambridge , 1991 ) . Google Scholar -
R. F. Streater and A. S. Wightman , PCT, Spin and Statistics, and All That ( Princeton University Press , Princeton , 2000 ) . Google Scholar -
R. Haag , Local Quantum Physics: Fields, Particles, Algebras ( Springer Berlin , Germany , 1992 ) . Google Scholar -
F. G. Friedlander , The Wave Equation on a Curved Space-Time ( Cambridge University Press , Cambridge , 1975 ) . Google Scholar - J. Math. Phys. 24, 2481 (1983). Web of Science, ADS, Google Scholar
- J. Math. Phys. 40, 1041 (1999). Web of Science, Google Scholar
- J. Math. Phys. 46, 022503 (2005), arXiv:gr-qc/0304054. Web of Science, Google Scholar
- S. Hollands and A. Ishibashi, Asymptotic flatness at null infinity in higher dimensional gravity , arXiv:hep-th/0311178 . Google Scholar
- Phys. Rev. D 55, 669 (1997), arXiv:gr-qc/9608042. Web of Science, ADS, Google Scholar
-
O. Bratteli and D. W. Robinson , Operator Algebras And Quantum Statistical Mechanics 1 ( Springer-Verlag , New York , 1979 ) . Google Scholar - P. J. M. Bongaarts, Linear fields according to I.E. Segal, in Mathematics of Contemporary Physics, ed. R. F. Streater (Academic Press, London, 1972); J. T. Lewis, The free boson gas, ibid . Google Scholar