World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.
Special Issue – Unconventional Computation and Natural Computation 2013No Access

AN ANALOGUE-DIGITAL CHURCH-TURING THESIS

    https://doi.org/10.1142/S0129054114400012Cited by:7 (Source: Crossref)

    We argue that dynamical systems involving discrete and continuous data can be modelled by Turing machines with oracles that are physical processes. Using the theory introduced in Beggs et al. [2,3], we consider the scope and limits of polynomial time computations by such systems. We propose a general polynomial time Church-Turing Thesis for feasible computations by analogue-digital systems, having the non-uniform complexity class BPP//log* as theoretical upper bound. We show why BPP//log* should be replace P/poly, which was proposed by Siegelmann for neural nets [23,24]. Then we examine whether other sources of hypercomputation can be found in analogue-digital systems besides the oracle itself. We prove that the higher polytime limit P/poly can be attained via non-computable analogue-digital interface protocols.

    Remember to check out the Most Cited Articles!

    Check out these Handbooks in Computer Science