World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

P SYSTEMS WITH ACTIVE MEMBRANES WORKING IN POLYNOMIAL SPACE

    https://doi.org/10.1142/S0129054111007836Cited by:18 (Source: Crossref)

    We prove that recognizer P systems with active membranes using polynomial space characterize the complexity class PSPACE. This result holds for both confluent and nonconfluent systems, and independently of the use of membrane division rules.

    AMSC: 68Q10, 68Q15

    References

    • C. H.   Papadimitriou , Computational Complexity ( Addison-Wesley , 1993 ) . Google Scholar
    • G. Păun, Journal of Automata, Languages and Combinatorics 6(1), 75 (2001). Google Scholar
    • G.   Păun , G.   Rozenberg and A.   Salomaa (eds.) , The Oxford Handbook of Membrane Computing ( Oxford University Press , 2010 ) . CrossrefGoogle Scholar
    • M. J. Pérez-Jiménez, A. Romero-iménez and F. Sancho-Caparrini, Natural Comp. 2(3), 265 (2003). CrossrefGoogle Scholar
    • A. E. Porrecaet al., International Journal of Computers, Communications & Control 4(3), 301 (2009). Crossref, Web of ScienceGoogle Scholar
    • A. E. Porreca, A. Leporati, G. Mauri and C. Zandron, P systems with active membranes: Trading time for space. Natural Computing, to appear . Google Scholar
    • A. E.   Porreca , A.   Leporati and C.   Zandron , On a powerful class of non-universal P systems with active membranes , Proceedings of DLT 2010 , LNCS . Google Scholar
    • A. E. Porreca, G. Mauri and C. Zandron, RAIRO Theoretical Informatics and Applications 40(2), 141 (2006). Crossref, Web of ScienceGoogle Scholar
    • A. E. Porreca, G. Mauri and C. Zandron, Theoretical Computer Science 411(6), 878 (2010). Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out these Handbooks in Computer Science