World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Chapter 1: Attribution of Climate Change in the Presence of Internal Variability

    https://doi.org/10.1142/9789814579933_0001Cited by:25 (Source: Crossref)
    Abstract:

    Spontaneous, internally-generated variability of the climate system is pervasive. On the multidecadal time scale it dominates the variability of surface air temperature averaged over extratropical land areas as large as the contiguous United States, and it modulates the rate of rise of global mean temperature in response to the buildup of greenhouse gases. Unforced variability is one of the factors that imposes limitations on the degree of confidence that can be attached to assessments and predictions of human-induced climate change. This chapter summarizes results of some recent studies based on the analysis of large ensembles of numerical integrations run with a suite of different atmospheric initial conditions but with the same prescribed external forcing scenario. The future trajectory of the real climate system is, in some sense, like the trajectory of an individual member of such an ensemble. The diversity of the trends among the different ensemble members is a part of the irreducible uncertainty inherent in projections of future climate change. It is shown how statistical methods can be used to diagnose the causes of this diversity, most of which is in response to member-to-member diversity in the atmospheric circulation trends, as reflected in the associated patterns of the sea-level pressure trends. Interactions between the atmosphere, oceans, and land also contribute to the variability of surface air temperature trends on the multidecadal time scale, as discussed in several chapters of this book. It is argued that in the face of such large uncertainties in the attribution of climate change in the extratropics, more attention should be focused on climate change in the tropics, where the greenhouse warming signal stands out more clearly, and on the broader suite of environmental issues that impact food security and the viability of ecosystems.