World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Mid-year Sales: Get 35% off with a min. purchase of 2 titles. Use code MIDYEAR35. Valid till 30th June 2025.

Hurst Index Estimation for Self-Similar Processes with Long-Memory

    https://doi.org/10.1142/9789814277266_0006Cited by:7 (Source: Crossref)
    Abstract:

    The statistical estimation of the Hurst index is one of the fundamental problems in the literature of long-range dependent and self-similar processes. In this article, the Hurst index estimation problem is addressed for a special class of self-similar processes that exhibit long-memory, the Hermite processes. These processes generalize the fractional Brownian motion, in the sense that they share its covariance function, but are non-Gaussian. Existing estimators such as the R/S statistic, the variogram, the maximum likelihood and the wavelet-based estimators are reviewed and compared with a class of consistent estimators which are constructed based on the discrete variations of the process. Convergence theorems (asymptotic distributions) of the latter are derived using multiple Wiener-Itô integrals and Malliavin calculus techniques. Based on these results, it is shown that the latter are asymptotically more efficient than the former.