World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

AUTOMATIC CREATION OF COMPUTER PROGRAMS FOR DESIGNING ELECTRICAL CIRCUITS USING GENETIC PROGRAMMING

    https://doi.org/10.1142/9789812816153_0005Cited by:0 (Source: Crossref)
    Abstract:

    One of the central goals of computer science is to get computers to solve problems starting from only a high-level statement of the problem. The goal of automating the design process bears many similarities to the goal of automatically creating computer programs. The design process entails creation of a complex structure to satisfy user-defined requirements. The design process is usually viewed as requiring human intelligence. Indeed, design is a major activity of practicing engineers. For these reasons, the design process offers a practical yardstick for evaluating automated programming (program synthesis) techniques. In particular, the design (synthesis) of analog electrical circuits entails the creation of both the topology and sizing (numerical values) of all of a circuit's components. There has previously been no general automated technique for automatically designing an analog electrical circuit from a high-level statement of the circuit's desired behavior. This paper shows how genetic programming can be used to automate the design of both the topology and sizing of a suite of five prototypical analog circuits, including a lowpass filter, a tri-state frequency discriminator circuit, a 60 dB amplifier, a computational circuit for the square root, and a time-optimal robot controller circuit. All five of these genetically evolved circuits constitute instances of an evolutionary computation technique solving a problem that is usually thought to require human intelligence.