World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

USING CYCLIC STRING MATCHING TO FIND ROTATIONAL AND REFLECTIONAL SYMMETRIES IN SHAPES

    https://doi.org/10.1142/9789812797698_0010Cited by:1 (Source: Crossref)
    Abstract:

    Symmetry is one of the shape features that is often used in computer vision. Some computer vision systems use symmetry-based indexing functions to retrieve images from an image database. Other computer vision applications need to detect the orientation of a shape before it is matched with a model and, if the shape is rotationally symmetric, a specific method has to be developed to find the principal axes of the shape. Symmetry is also useful to recover a planar symmetric figure from an image without the need of models. In this paper, a simple and fast method to detect perfect and distorted rotational symmetries of 2D objects is described. The boundary of a shape is polygonally approximated and represented as a string. A key observation is that the boundary of a rotationally symmetric shape consists of a sequence of identical substrings. Rotational symmetries are found by cyclic string matching between two identical copies of the shape string. The set of minimum cost edit sequences that transform the shape string to a cyclically shifted version of itself define the rotational symmetry and its order. Finally, it is observed that it is possible to find out if a shape string is reflectionally symmetric by computing the cyclic string matching between the string and a reversed version of itself. Thus, a modification of the algorithm is proposed to detect reflectional symmetries. Some experimental results are presented to show the reliability of the proposed algorithm.