World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
World Book Day: Get 35% off with a min. purchase of 2 titles. Use code BOOK35. Valid till 30th April 2025.

Improving QSAR Modeling for Predictive Toxicology using Publicly Aggregated Semantic Graph Data and Graph Neural Networks

    https://doi.org/10.1142/9789811250477_0018Cited by:4 (Source: Crossref)
    Abstract:

    Quantitative Structure-Activity Relationship (QSAR) modeling is a common computational technique for predicting chemical toxicity, but a lack of new methodological innovations has impeded QSAR performance on many tasks. We show that contemporary QSAR modeling for predictive toxicology can be substantially improved by incorporating semantic graph data aggregated from open-access public databases, and analyzing those data in the context of graph neural networks (GNNs). Furthermore, we introspect the GNNs to demonstrate how they can lead to more interpretable applications of QSAR, and use ablation analysis to explore the contribution of different data elements to the final models’ performance.