World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries. by:0 (Source: Crossref)

The development of a 3D microstructural model for the analysis of degradation and failure in polycrystalline materials is reviewed in the present chapter. The material is explicitly modelled at the grain level, using integral equations in conjunction with a phenomenological crystal plasticity framework for the bulk grains, and with cohesive-frictional laws to represent inter-granular micro-cracking processes. The method allows to capture the initiation, development and coalescence of damage or plasticity at the aggregate scale. The formulation’s key feature is the representation of the mechanical problem in terms of inter-granular variables only, which allows to reduce the computational cost of the analysis. In the present chapter, the building blocks of the technique are described and emphasis is given to the description of the adopted cohesive-frictional laws, which are the fundamental ingredient for the study of inter-granular degradation processes. The potential of the framework is illustrated through micro-cracking and crystal plasticity simulations. The effect of inter-granular friction on the macroscopic material properties is highlighted through micro-cracking simulations under compressive loading.