Polytopes and machine learning
Abstract
We introduce machine learning methodology to the study of lattice polytopes. With supervised learning techniques, we predict standard properties such as volume, dual volume, and reflexivity with accuracies up to 100%. We focus on 2d polygons and 3d polytopes with Plücker coordinates as input, which outperform the usual vertex representation.
References
- 1. , Estimating Calabi-Yau hypersurface and triangulation counts with equation learners, J. High Energy Phys. 03 (2019) 186, arXiv:1811.06490 [hep-th]. Crossref, Google Scholar
- 2. , A Calabi-Yau database: Threefolds constructed from the Kreuzer-Skarke list, J. High Energy Phys. 02 (2015) 158, arXiv:1411.1418 [hep-th]. Crossref, Google Scholar
- 3. G. Balletti, A. M. Kasprzyk and B. Nill, On the maximum dual volume of a canonical fano polytope, preprint (2016), arXiv:1611.02455 [math.CO]. Google Scholar
- 4. , Quiver mutations, Seiberg duality and machine learning, Phys. Rev. D 102(8) (2020) 086013, arXiv:2006.10783 [hep-th]. Crossref, Google Scholar
- 5. , Neurons on Amoebae, J. Symb. Comput. 116 (2022) 1–38, arXiv:2106.03695 [math.AG]. Crossref, Google Scholar
- 6. , Hilbert series, machine learning, and applications to physics, Phys. Lett. B 827 (2022) 136966, arXiv:2103.13436 [hep-th]. Crossref, Google Scholar
- 7. J. Bao, Y.-H. He, E. Hirst and S. Pietromonaco, Lectures on the Calabi-Yau landscape, preprint (2020), arXiv:2001.01212 [hep-th]. Google Scholar
- 8. , On Calabi-Yau Complete Intersections in Toric Varieties, Higher Dimensional Complex Varieties: Proc. Int. Conf. (De Gruyter, 1996), pp. 39–66, http://dx.doi.org/doi:10.1515/9783110814736.39. Google Scholar
- 9. V. Batyrev and J. Hofscheier, Lattice polytopes, finite abelian subgroups in and coding theory, preprint (2013), arXiv:1309.5312 [math.CO]. Google Scholar
- 10. , A generalization of a theorem of white, Mosc. J. Comb. Number Theory 10(4) (2022) 281–296. Crossref, Google Scholar
- 11. V. Batyrev, A. Kasprzyk and K. Schaller, On the fine interior of three-dimensional canonical Fano polytopes, preprint (2019), arXiv:1911.12048 [math.AG]. Google Scholar
- 12. , Yellowbrick: Visualizing the Scikit-Learn model selection process, J. Open Source Softw. 4(35) (2019) 1075, http://joss.theoj.org/papers/10.21105/joss.01075. Crossref, Google Scholar
- 13. , Lattice points in lattice polytopes, Monatsh. Math. 99 (1985) 253–265. Crossref, Google Scholar
- 14. , Modern Multidimensional Scaling: Theory and Applications (Springer Science & Business Media, 2005). Google Scholar
- 15. A. Borisov, Convex lattice polytopes and cones with few lattice points inside, from a birational geometry viewpoint, preprint (2000), arXiv:math/0001109. Google Scholar
- 16. , Singular toric fano varieties, Mat. Sb. 183(2) (1992) 134–141. Google Scholar
- 17. A. P. Braun, J. Knapp, E. Scheidegger, H. Skarke and N.-O. Walliser, PALP — A user manual, preprint (2012), arXiv:1205.4147 [math.AG]. Google Scholar
- 18. , Machine learning in the string landscape, J. High Energy Phys. 09 (2017) 157, arXiv:1707.00655 [hep-th]. Crossref, Google Scholar
- 19. , Toric Varieties,
Graduate Studies in Mathematics (American Mathematical Society, 2011). Crossref, Google Scholar - 20. , The Kreuzer-Skarke axiverse, J. High Energy Phys. 04 (2020) 138, arXiv:1808.01282 [hep-th]. Crossref, Google Scholar
- 21. M. Demirtas, L. McAllister and A. Rios-Tascon, Bounding the Kreuzer-Skarke landscape, preprint (2020), arXiv:2008.01730 [hep-th]. Google Scholar
- 22. , Sur un probleme de géométrie diophantienne linéaire II, J. Reine Angew. Math. 227(25) (1967) C49. Google Scholar
- 23. , Learning convex polytopes with margin, in 32nd Conf. Neural Information Processing Systems (NeurIPS, 2018), pp. 5711–5721. Google Scholar
- 24. N. Goyal, The polytope learning problem, talk @ simons workshop on computational challenges in machine learning (2017), https://simons.berkeley.edu/ workshops/machinelearning2017-3. Google Scholar
- 25. , Deep-learning the landscape, Phys. Lett. B 774 (2017) 564–568, arXiv:1706.02714 [hep-th]. Crossref, Google Scholar
- 26. , The Calabi-Yau Landscape: From Geometry, to Physics, to Machine-Learning (Springer Nature, 2021). Crossref, Google Scholar
- 27. Y.-H. He, Machine-learning mathematical structures, preprint (2021), arXiv:2101.06317 [cs.LG]. Google Scholar
- 28. , Machine-learning dessins d’enfants: explorations via modular and Seiberg–Witten curves, J. Phys. A 54(7) (2021) 075401, arXiv:2004.05218 [hep-th]. Crossref, Google Scholar
- 29. , Patterns in Calabi–Yau distributions, Commun. Math. Phys. 354(2) (2017) 477–524, arXiv:1512.01579 [hep-th]. Crossref, Google Scholar
- 30. , Algebraic and Geometric Combinatorics on Lattice Polytopes — Proc. Summer Workshop on Lattice Polytopes (World Scientific, 2019). Link, Google Scholar
- 31. , Calabi–Yau volumes and reflexive polytopes, Commun. Math. Phys. 361(1) (2018) 155–204, arXiv:1704.03462 [hep-th]. Crossref, Google Scholar
- 32. , Canonical toric fano threefolds, Can. J. Math. 62(6) (2010) 1293–1309. Crossref, Google Scholar
- 33. , Reflexive polytopes of higher index and the number 12, Electron. J. Combin. 19(3) (2012) 9. Crossref, Google Scholar
- 34. ,
Fano polytopes , in Strings, Gauge Fields, and the Geometry Behind (World Scientific Publishing, Hackensack, NJ, 2013), pp. 349–364. Google Scholar - 35. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, preprint (2014), arXiv:1412.6980 [cs.LG]. Google Scholar
- 36. , Machine learning of Calabi-Yau volumes, Phys. Rev. D 96(6) (2017) 066014, arXiv:1706.03346 [hep-th]. Crossref, Google Scholar
- 37. , On the classification of reflexive polyhedra, Commun. Math. Phys. 185 (1997) 495–508, arXiv:hep-th/9512204. Crossref, Google Scholar
- 38. , Classification of reflexive polyhedra in three-dimensions, Adv. Theor. Math. Phys. 2 (1998) 853–871, arXiv:hep-th/9805190. Crossref, Google Scholar
- 39. , Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209–1230, arXiv:hep-th/0002240. Crossref, Google Scholar
- 40. , Geometrie der Zahlen,
Geometrie der Zahlen (B. G. Teubner, 1910). Google Scholar - 41. , Scikit-learn: Machine learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830. Google Scholar
- 42. , Lattice polygons and the number 12, Am. Math. Mon. 107(3) (2000) 238–250. Crossref, Google Scholar
- 43. , Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer (World Scientific, 2013). Google Scholar
- 44. , Evolving neural networks with genetic algorithms to study the string landscape, J. High Energy Phys. 08 (2017) 038, arXiv:1706.07024 [hep-th]. Crossref, Google Scholar
- 45. , Introduction to the Geometry of N Dimensions,
Dover Books on Mathematics (Dover Publications, 2020). Google Scholar