World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Polytopes and machine learning

    https://doi.org/10.1142/S281093922350003XCited by:2 (Source: Crossref)

    We introduce machine learning methodology to the study of lattice polytopes. With supervised learning techniques, we predict standard properties such as volume, dual volume, and reflexivity with accuracies up to 100%. We focus on 2d polygons and 3d polytopes with Plücker coordinates as input, which outperform the usual vertex representation.

    References

    • 1. R. Altman, J. Carifio, J. Halverson and B. D. Nelson , Estimating Calabi-Yau hypersurface and triangulation counts with equation learners, J. High Energy Phys. 03 (2019) 186, arXiv:1811.06490 [hep-th]. CrossrefGoogle Scholar
    • 2. R. Altman, J. Gray, Y.-H. He, V. Jejjala and B. D. Nelson , A Calabi-Yau database: Threefolds constructed from the Kreuzer-Skarke list, J. High Energy Phys. 02 (2015) 158, arXiv:1411.1418 [hep-th]. CrossrefGoogle Scholar
    • 3. G. Balletti, A. M. Kasprzyk and B. Nill, On the maximum dual volume of a canonical fano polytope, preprint (2016), arXiv:1611.02455 [math.CO]. Google Scholar
    • 4. J. Bao, S. Franco, Y.-H. He, E. Hirst, G. Musiker and Y. Xiao , Quiver mutations, Seiberg duality and machine learning, Phys. Rev. D 102(8) (2020) 086013, arXiv:2006.10783 [hep-th]. CrossrefGoogle Scholar
    • 5. J. Bao, Y.-H. He and E. Hirst , Neurons on Amoebae, J. Symb. Comput. 116 (2022) 1–38, arXiv:2106.03695 [math.AG]. CrossrefGoogle Scholar
    • 6. J. Bao, Y.-H. He, E. Hirst, J. Hofscheier, A. Kasprzyk and S. Majumder , Hilbert series, machine learning, and applications to physics, Phys. Lett. B 827 (2022) 136966, arXiv:2103.13436 [hep-th]. CrossrefGoogle Scholar
    • 7. J. Bao, Y.-H. He, E. Hirst and S. Pietromonaco, Lectures on the Calabi-Yau landscape, preprint (2020), arXiv:2001.01212 [hep-th]. Google Scholar
    • 8. V. V. Batyrev and L. A. Borisov , On Calabi-Yau Complete Intersections in Toric Varieties, Higher Dimensional Complex Varieties: Proc. Int. Conf. (De Gruyter, 1996), pp. 39–66, http://dx.doi.org/doi:10.1515/9783110814736.39. Google Scholar
    • 9. V. Batyrev and J. Hofscheier, Lattice polytopes, finite abelian subgroups in SL(n,C) and coding theory, preprint (2013), arXiv:1309.5312 [math.CO]. Google Scholar
    • 10. V. Batyrev and J. Hofscheier , A generalization of a theorem of white, Mosc. J. Comb. Number Theory 10(4) (2022) 281–296. CrossrefGoogle Scholar
    • 11. V. Batyrev, A. Kasprzyk and K. Schaller, On the fine interior of three-dimensional canonical Fano polytopes, preprint (2019), arXiv:1911.12048 [math.AG]. Google Scholar
    • 12. B. Bengfort and R. Bilbro , Yellowbrick: Visualizing the Scikit-Learn model selection process, J. Open Source Softw. 4(35) (2019) 1075, http://joss.theoj.org/papers/10.21105/joss.01075. CrossrefGoogle Scholar
    • 13. U. Betke and P. McMullen , Lattice points in lattice polytopes, Monatsh. Math. 99 (1985) 253–265. CrossrefGoogle Scholar
    • 14. I. Borg and P. J. Groenen , Modern Multidimensional Scaling: Theory and Applications (Springer Science & Business Media, 2005). Google Scholar
    • 15. A. Borisov, Convex lattice polytopes and cones with few lattice points inside, from a birational geometry viewpoint, preprint (2000), arXiv:math/0001109. Google Scholar
    • 16. A. A. Borisov and L. A. Borisov , Singular toric fano varieties, Mat. Sb. 183(2) (1992) 134–141. Google Scholar
    • 17. A. P. Braun, J. Knapp, E. Scheidegger, H. Skarke and N.-O. Walliser, PALP — A user manual, preprint (2012), arXiv:1205.4147 [math.AG]. Google Scholar
    • 18. J. Carifio, J. Halverson, D. Krioukov and B. D. Nelson , Machine learning in the string landscape, J. High Energy Phys. 09 (2017) 157, arXiv:1707.00655 [hep-th]. CrossrefGoogle Scholar
    • 19. D. Cox, J. Little and H. Schenck , Toric Varieties, Graduate Studies in Mathematics (American Mathematical Society, 2011). CrossrefGoogle Scholar
    • 20. M. Demirtas, C. Long, L. McAllister and M. Stillman , The Kreuzer-Skarke axiverse, J. High Energy Phys. 04 (2020) 138, arXiv:1808.01282 [hep-th]. CrossrefGoogle Scholar
    • 21. M. Demirtas, L. McAllister and A. Rios-Tascon, Bounding the Kreuzer-Skarke landscape, preprint (2020), arXiv:2008.01730 [hep-th]. Google Scholar
    • 22. E. Ehrhart , Sur un probleme de géométrie diophantienne linéaire II, J. Reine Angew. Math. 227(25) (1967) C49. Google Scholar
    • 23. L.-A. Gottlieb, E. Kaufman, A. Kontorovich and G. Nivasch , Learning convex polytopes with margin, in 32nd Conf. Neural Information Processing Systems (NeurIPS, 2018), pp. 5711–5721. Google Scholar
    • 24. N. Goyal, The polytope learning problem, talk @ simons workshop on computational challenges in machine learning (2017), https://simons.berkeley.edu/ workshops/machinelearning2017-3. Google Scholar
    • 25. Y.-H. He , Deep-learning the landscape, Phys. Lett. B 774 (2017) 564–568, arXiv:1706.02714 [hep-th]. CrossrefGoogle Scholar
    • 26. Y.-H. He , The Calabi-Yau Landscape: From Geometry, to Physics, to Machine-Learning (Springer Nature, 2021). CrossrefGoogle Scholar
    • 27. Y.-H. He, Machine-learning mathematical structures, preprint (2021), arXiv:2101.06317 [cs.LG]. Google Scholar
    • 28. Y.-H. He, E. Hirst and T. Peterken , Machine-learning dessins d’enfants: explorations via modular and Seiberg–Witten curves, J. Phys. A 54(7) (2021) 075401, arXiv:2004.05218 [hep-th]. CrossrefGoogle Scholar
    • 29. Y.-H. He, V. Jejjala and L. Pontiggia , Patterns in Calabi–Yau distributions, Commun. Math. Phys. 354(2) (2017) 477–524, arXiv:1512.01579 [hep-th]. CrossrefGoogle Scholar
    • 30. T. Hibi and A. Tsuchiya , Algebraic and Geometric Combinatorics on Lattice Polytopes — Proc. Summer Workshop on Lattice Polytopes (World Scientific, 2019). LinkGoogle Scholar
    • 31. Y.-H. He, R.-K. Seong and S.-T. Yau , Calabi–Yau volumes and reflexive polytopes, Commun. Math. Phys. 361(1) (2018) 155–204, arXiv:1704.03462 [hep-th]. CrossrefGoogle Scholar
    • 32. A. M. Kasprzyk , Canonical toric fano threefolds, Can. J. Math. 62(6) (2010) 1293–1309. CrossrefGoogle Scholar
    • 33. A. M. Kasprzyk and B. Nill , Reflexive polytopes of higher index and the number 12, Electron. J. Combin. 19(3) (2012) 9. CrossrefGoogle Scholar
    • 34. A. M. Kasprzyk and B. Nill , Fano polytopes, in Strings, Gauge Fields, and the Geometry Behind (World Scientific Publishing, Hackensack, NJ, 2013), pp. 349–364. Google Scholar
    • 35. D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, preprint (2014), arXiv:1412.6980 [cs.LG]. Google Scholar
    • 36. D. Krefl and R.-K. Seong , Machine learning of Calabi-Yau volumes, Phys. Rev. D 96(6) (2017) 066014, arXiv:1706.03346 [hep-th]. CrossrefGoogle Scholar
    • 37. M. Kreuzer and H. Skarke , On the classification of reflexive polyhedra, Commun. Math. Phys. 185 (1997) 495–508, arXiv:hep-th/9512204. CrossrefGoogle Scholar
    • 38. M. Kreuzer and H. Skarke , Classification of reflexive polyhedra in three-dimensions, Adv. Theor. Math. Phys. 2 (1998) 853–871, arXiv:hep-th/9805190. CrossrefGoogle Scholar
    • 39. M. Kreuzer and H. Skarke , Complete classification of reflexive polyhedra in four-dimensions, Adv. Theor. Math. Phys. 4 (2002) 1209–1230, arXiv:hep-th/0002240. CrossrefGoogle Scholar
    • 40. H. Minkowski , Geometrie der Zahlen, Geometrie der Zahlen (B. G. Teubner, 1910). Google Scholar
    • 41. F. Pedregosa et al., Scikit-learn: Machine learning in python, J. Mach. Learn. Res. 12 (2011) 2825–2830. Google Scholar
    • 42. B. Poonen and F. Rodriguez-Villegas , Lattice polygons and the number 12, Am. Math. Mon. 107(3) (2000) 238–250. CrossrefGoogle Scholar
    • 43. A. Rebhan, L. Katzarkov and J. Knapp , Strings, Gauge Fields, and the Geometry Behind: The Legacy of Maximilian Kreuzer (World Scientific, 2013). Google Scholar
    • 44. F. Ruehle , Evolving neural networks with genetic algorithms to study the string landscape, J. High Energy Phys. 08 (2017) 038, arXiv:1706.07024 [hep-th]. CrossrefGoogle Scholar
    • 45. D. Sommerville , Introduction to the Geometry of N Dimensions, Dover Books on Mathematics (Dover Publications, 2020). Google Scholar