World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Machine learning class numbers of real quadratic fields

    https://doi.org/10.1142/S2810939223500016Cited by:0 (Source: Crossref)

    We implement and interpret various supervised learning experiments involving real quadratic fields with class numbers 1, 2 and 3. We quantify the relative difficulties in separating class numbers of matching/different parity from a data-scientific perspective, apply the methodology of feature analysis and principal component analysis, and use symbolic classification to develop machine-learned formulas for class numbers 1, 2 and 3 that apply to our dataset.

    AMSC: 11R29, 11R80, 62R99

    References

    • 1. M. Amir (2022), https://github.com/malik-amir/Machine-Learning-of-the-Tate-Shafarevich-group. Google Scholar
    • 2. W. Duke , Extreme values of Artin L-functions and class numbers, Compos. Math. 136(1) (2003) 103–115. CrossrefGoogle Scholar
    • 3. Y.-H. He, K.-H. Lee and T. Oliver , Machine-learning the Sato–Tate conjecture, J. Symb. Comput. 111 (2022) 61–72. CrossrefGoogle Scholar
    • 4. Y.-H. He, K.-H. Lee and T. Oliver , Machine-learning number fields, Math. Comput. Geom. Data 2 (2022) 49–66. CrossrefGoogle Scholar
    • 5. Y.-H. He, K.-H. Lee and T. Oliver , Machine learning the invariants of arithmetic curves, J. Symb. Comput. 115 (2023) 478–491. CrossrefGoogle Scholar
    • 6. Y.-H. He, K.-H. Lee, T. Oliver and A. Pozdnyakov, Murmurations of elliptic curves, preprint (2022), arXiv:2204.10140. Google Scholar
    • 7. G. J. Janusz , Algebraic Number Fields, Pure and Applied Mathematics, Vol. 55 (Academic Press, New York, 1973). Google Scholar
    • 8. M. F. Korns , Genetic programming symbolic classification: A study, Genetic Programming Theory and Practice XV (Springer, 2018), pp. 39–54. CrossrefGoogle Scholar
    • 9. E. Kowalski , Elementary theory of L-functions, II, An Introduction to the Langlands Program (Jerusalem, 2001) (Birkhäuser Boston, Boston, MA, 2003), pp. 21–37. Google Scholar
    • 10. F. Lemmermeyer , Reciprocity Laws: From Euler to Eisenstein, Springer Monographs in Mathematics (Springer-Verlag, Berlin, 2000). CrossrefGoogle Scholar
    • 11. The LMFDB Collaboration, The L-functions and modular forms database (2022), http://www.lmfdb.org. Google Scholar
    • 12. A. Płońska and P. Płoński, MLJAR: State-of-the-art automated machine learning framework for tabular data, Version 0.10.3, MLJAR (2021), https://github.com/mljar/mljar-supervised. Google Scholar
    • 13. S. Udrescu and M. Tegmark , AI Feynman: A physics-inspired method for symbolic regression, Sci. Adv. 6(16) (2020) eaay2631, arXiv:1905.11481. CrossrefGoogle Scholar
    • 14. S. Wagner et al., Architecture and design of the heuristiclab optimization environment, Advanced Methods and Applications in Computational Intelligence, Topics in Intelligent Engineering and Informatics Series (Springer, 2014), pp. 197–261. CrossrefGoogle Scholar