Machine learning class numbers of real quadratic fields
Abstract
We implement and interpret various supervised learning experiments involving real quadratic fields with class numbers 1, 2 and 3. We quantify the relative difficulties in separating class numbers of matching/different parity from a data-scientific perspective, apply the methodology of feature analysis and principal component analysis, and use symbolic classification to develop machine-learned formulas for class numbers 1, 2 and 3 that apply to our dataset.
References
- 1. M. Amir (2022), https://github.com/malik-amir/Machine-Learning-of-the-Tate-Shafarevich-group. Google Scholar
- 2. , Extreme values of Artin L-functions and class numbers, Compos. Math. 136(1) (2003) 103–115. Crossref, Google Scholar
- 3. , Machine-learning the Sato–Tate conjecture, J. Symb. Comput. 111 (2022) 61–72. Crossref, Google Scholar
- 4. , Machine-learning number fields, Math. Comput. Geom. Data 2 (2022) 49–66. Crossref, Google Scholar
- 5. , Machine learning the invariants of arithmetic curves, J. Symb. Comput. 115 (2023) 478–491. Crossref, Google Scholar
- 6. Y.-H. He, K.-H. Lee, T. Oliver and A. Pozdnyakov, Murmurations of elliptic curves, preprint (2022), arXiv:2204.10140. Google Scholar
- 7. , Algebraic Number Fields,
Pure and Applied Mathematics , Vol. 55 (Academic Press, New York, 1973). Google Scholar - 8. ,
Genetic programming symbolic classification: A study , Genetic Programming Theory and Practice XV (Springer, 2018), pp. 39–54. Crossref, Google Scholar - 9. ,
Elementary theory of L-functions, II , An Introduction to the Langlands Program (Jerusalem, 2001) (Birkhäuser Boston, Boston, MA, 2003), pp. 21–37. Google Scholar - 10. , Reciprocity Laws: From Euler to Eisenstein,
Springer Monographs in Mathematics (Springer-Verlag, Berlin, 2000). Crossref, Google Scholar - 11. The LMFDB Collaboration, The L-functions and modular forms database (2022), http://www.lmfdb.org. Google Scholar
- 12. A. Płońska and P. Płoński, MLJAR: State-of-the-art automated machine learning framework for tabular data, Version 0.10.3, MLJAR (2021), https://github.com/mljar/mljar-supervised. Google Scholar
- 13. , AI Feynman: A physics-inspired method for symbolic regression, Sci. Adv. 6(16) (2020) eaay2631, arXiv:1905.11481. Crossref, Google Scholar
- 14. ,
Architecture and design of the heuristiclab optimization environment , Advanced Methods and Applications in Computational Intelligence,Topics in Intelligent Engineering and Informatics Series (Springer, 2014), pp. 197–261. Crossref, Google Scholar