World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Coupling of Discontinuous Galerkin and Pseudo-Spectral Methods for Time-Dependent Acoustic Problems

    https://doi.org/10.1142/S2591728524500178Cited by:0 (Source: Crossref)

    Many realistic problems in computational acoustics involve complex geometries and sound propagation over large domains, which requires accurate and efficient numerical schemes. It is difficult to meet these requirements with a single numerical method. Pseudo-spectral (PS) methods are very efficient, but are limited to rectangular shaped domains. In contrast, the nodal discontinuous Galerkin (DG) method can be easily applied to complex geometries, but can become expensive for large problems.

    In this paper, we study a coupling strategy between the PS and DG methods to efficiently solve time-domain acoustic wave problems. The idea is to combine the strengths of these two methods: the PS method is used on the part of the domain without geometric constraints, while the DG method is used around the PS region to accurately represent the geometry. This combination allows for the rapid and accurate simulations of large-scale acoustic problems with complex geometries, but the coupling and the parameter selection require great care.

    The coupling is achieved by introducing an overlap between the PS and DG regions. The solutions are interpolated on the overlaps, which allows the use of unstructured finite element meshes. A standard explicit Runge–Kutta time-stepping scheme is used with the DG scheme, while implicit schemes can be used with the PS scheme due to the peculiar structure of this scheme. We present one- and two-dimensional results to validate the coupling technique. To guide future implementations of this method, we extensively study the influence of different numerical parameters on the accuracy of the schemes and the coupling strategy.

    References

    • 1. M. Bernacki and S. Piperno . A dissipation-free time-domain discontinuous Galerkin method applied to three-dimensional linearized Euler equations around a steady-state non-uniform inviscid flow. Journal of Computational Acoustics, 14(04): 445–467, Dec. 2006. LinkGoogle Scholar
    • 2. J. P. Boyd . Chebyshev and Fourier spectral methods. Courier Corporation, 2001. Google Scholar
    • 3. O. P. Bruno and J. Paul . Two-dimensional Fourier continuation and applications. SIAM Journal on Scientific Computing, 44(2): A964–A992, 2022. CrossrefGoogle Scholar
    • 4. O. P. Bruno, Y. Han, and M. M. Pohlman . Accurate, high-order representation of complex three-dimensional surfaces via Fourier continuation analysis. Journal of Computational Physics, 227(2): 1094–1125, 2007. CrossrefGoogle Scholar
    • 5. J. C. Butcher . Implicit Runge–Kutta processes. Mathematics of Computation, 18(85): 50–64, 1964. CrossrefGoogle Scholar
    • 6. C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang . Spectral methods. Encyclopedia of Computational Mechanics, 2004. CrossrefGoogle Scholar
    • 7. M. H. Carpenter and C. A. Kennedy. Fourth-order 2n-storage Runge-Kutta schemes. Technical report, NASA Langley Research Center Hampton, VA, United States, 1994. Google Scholar
    • 8. D. Cavaglieri and T. Bewley . Low-storage implicit/explicit Runge–Kutta schemes for the simulation of stiff high-dimensional ODE systems. Journal of Computational Physics, 286: 172–193, 2015. CrossrefGoogle Scholar
    • 9. B. Cockburn and C.-W. Shu . Runge–Kutta discontinuous Galerkin methods for convection-dominated problems. Journal of Scientific Computing, 16: 173–261, 2001. CrossrefGoogle Scholar
    • 10. M. Cosnefroy and M. Hornikx . Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for urban sound propagation in a moving atmosphere. Proceedings of Euronoise 2021, 2021. Google Scholar
    • 11. M. Fuhry, A. Giuliani, and L. Krivodonova . Discontinuous Galerkin methods on graphics processing units for nonlinear hyperbolic conservation laws. International Journal for Numerical Methods in Fluids, 76(12): 982–1003, 2014. CrossrefGoogle Scholar
    • 12. D. Gottlieb and C.-W. Shu . On the Gibbs phenomenon and its resolution. SIAM review, 39(4): 644–668, 1997. CrossrefGoogle Scholar
    • 13. D. Gottlieb, C.-W. Shu, A. Solomonoff, and H. Vandeven . On the Gibbs phenomenon I: Recovering exponential accuracy from the Fourier partial sum of a nonperiodic analytic function. Journal of Computational and Applied Mathematics, 43(1–2): 81–98, 1992. CrossrefGoogle Scholar
    • 14. N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J. Manferdelli . High performance discrete Fourier transforms on graphics processors. In SC’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing, pages 1–12. Ieee, 2008. CrossrefGoogle Scholar
    • 15. J. S. Hesthaven and T. Warburton . Nodal high-order methods on unstructured grids: I. Time-domain solution of Maxwell’s equations. Journal of Computational Physics, 181(1): 186–221, 2002. CrossrefGoogle Scholar
    • 16. J. S. Hesthaven and T. Warburton . Nodal discontinuous Galerkin methods: algorithms, analysis, and applications. Springer Science & Business Media, 2007. Google Scholar
    • 17. J. S. Hesthaven, S. Gottlieb, and D. Gottlieb . Spectral methods for time-dependent problems, volume 21. Cambridge University Press, 2007. CrossrefGoogle Scholar
    • 18. M. Hornikx, R. Waxler, and J. Forssén . The extended Fourier pseudospectral time-domain method for atmospheric sound propagation. The Journal of the Acoustical Society of America, 128(4): 1632–1646, 2010. CrossrefGoogle Scholar
    • 19. M. Hornikx, W. De Roeck, and W. Desmet . A multi-domain Fourier pseudospectral time-domain method for the linearized Euler equations. Journal of Computational Physics, 231(14): 4759–4774, 2012. CrossrefGoogle Scholar
    • 20. M. Hornikx, T. Krijnen, and L. van Harten . openPSTD: The open source pseudospectral time-domain method for acoustic propagation. Computer Physics Communications, 203: 298–308, 2016. CrossrefGoogle Scholar
    • 21. X. Huang and X. Zhang . A Fourier pseudospectral method for some computational aeroacoustics problems. International Journal of Aeroacoustics, 5(3): 279–294, 2006. CrossrefGoogle Scholar
    • 22. Q. Huo Liu and G. Zhao . Review of PSTD methods for transient electromagnetics. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 17(3): 299–323, 2004. CrossrefGoogle Scholar
    • 23. D. Huybrechs . On the Fourier extension of nonperiodic functions. SIAM Journal on Numerical Analysis, 47(6): 4326–4355, 2010. CrossrefGoogle Scholar
    • 24. A. Klöckner, T. Warburton, J. Bridge, and J. S. Hesthaven . Nodal discontinuous Galerkin methods on graphics processors. Journal of Computational Physics, 228(21): 7863–7882, 2009. CrossrefGoogle Scholar
    • 25. M. Kronbichler and K. Kormann . Fast matrix-free evaluation of discontinuous Galerkin finite element operators. ACM Trans. Math. Softw., 45(3): 29: 1–29:40, Aug. 2019. CrossrefGoogle Scholar
    • 26. L. Lambrecht, A. Lamert, W. Friederich, T. Möller, and M. S. Boxberg . A nodal discontinuous Galerkin approach to 3-D viscoelastic wave propagation in complex geological media. Geophysical Journal International, 212(3): 1570–1587, Mar. 2018. CrossrefGoogle Scholar
    • 27. R. J. LeVeque . Finite volume methods for hyperbolic problems, volume 31. Cambridge University Press, 2002. CrossrefGoogle Scholar
    • 28. Q. H. Liu . The PSTD algorithm: A time-domain method requiring only two cells per wavelength. Microwave and Optical Technology Letters, 15(3): 158–165, 1997. CrossrefGoogle Scholar
    • 29. Q. H. Liu . PML and PSTD algorithm for arbitrary lossy anisotropic media. IEEE Microwave and Guided Wave Letters, 9(2): 48–50, 1999. CrossrefGoogle Scholar
    • 30. D. Lockard and H. Atkins . Efficient implementations of the quadrature-free discontinuous Galerkin method. In 14th Computational Fluid Dynamics Conference. American Institute of Aeronautics and Astronautics, Aug. 1999, https://doi.org/10.2514/6.1999-3309. CrossrefGoogle Scholar
    • 31. R. Mehra, N. Raghuvanshi, L. Savioja, M. C. Lin, and D. Manocha . An efficient GPU-based time domain solver for the acoustic wave equation. Applied Acoustics, 73(2): 83–94, 2012. CrossrefGoogle Scholar
    • 32. A. Modave, A. St-Cyr, W. A. Mulder, and T. Warburton . A nodal discontinuous Galerkin method for reverse-time migration on GPU clusters. Geophysical Journal International, 203(2): 1419–1435, 2015. CrossrefGoogle Scholar
    • 33. A. Modave, A. St-Cyr, and T. Warburton . GPU performance analysis of a nodal discontinuous Galerkin method for acoustic and elastic models. Computers & Geosciences, 91: 64–76, 2016. CrossrefGoogle Scholar
    • 34. M. N’diaye. On the study and development of high-order time integration schemes for ODEs applied to acoustic and electromagnetic wave propagation problems. PhD thesis, Université de Pau et des pays de l’Adour, 2017. Google Scholar
    • 35. R. Pagán Muñoz and M. Hornikx . A hybrid PSTD/DG method to solve the linearized Euler equations: optimization and accuracy. In 22nd AIAA/CEAS Aeroacoustics Conference, page 2718, 2016. CrossrefGoogle Scholar
    • 36. R. Pagán Muñoz and M. Hornikx . Hybrid Fourier pseudospectral/discontinuous Galerkin time-domain method for wave propagation. Journal of Computational Physics, 348: 416–432, 2017. CrossrefGoogle Scholar
    • 37. C. Pan. Design of a windowless digital filter using FFT algorithm. Technical report, Stanford Linear Accelerator Center, 1993. Google Scholar
    • 38. C. Pan. Gibbs phenomenon suppression and optimal windowing for attenuation and Q measurements. Technical report, Stanford Linear Accelerator Center, 1993. Google Scholar
    • 39. C. Pan . Gibbs phenomenon removal and digital filtering directly through the fast Fourier transform. IEEE Transactions on Signal Processing, 49(2): 444–448, 2001. CrossrefGoogle Scholar
    • 40. R. B. Platte and A. Gelb . A hybrid Fourier–Chebyshev method for partial differential equations. Journal of Scientific Computing, 39: 244–264, 2009. CrossrefGoogle Scholar
    • 41. N. Raghuvanshi, B. Lloyd, N. Govindaraju, and M. C. Lin . Efficient numerical acoustic simulation on graphics processors using adaptive rectangular decomposition. In Proceedings of the EAA Symposium on Auralization, 2009. Google Scholar
    • 42. N. Raghuvanshi, R. Narain, and M. C. Lin . Efficient and accurate sound propagation using adaptive rectangular decomposition. IEEE Transactions on Visualization and Computer Graphics, 15(5): 789–801, 2009. CrossrefGoogle Scholar
    • 43. K. R. Rao and P. Yip . Discrete cosine transform: algorithms, advantages, applications. Academic press, 2014. Google Scholar
    • 44. J. Shen . Efficient spectral-Galerkin method II. Direct solvers of second-and fourth-order equations using Chebyshev polynomials. SIAM Journal on Scientific Computing, 16(1): 74–87, 1995. CrossrefGoogle Scholar
    • 45. J. Shen, T. Tang, and L.-L. Wang . Spectral methods: algorithms, analysis and applications, volume 41. Springer Science & Business Media, 2011. CrossrefGoogle Scholar
    • 46. S. Terrana, J. P. Vilotte, and L. Guillot . A spectral hybridizable discontinuous Galerkin method for elastic–acoustic wave propagation. Geophysical Journal International, 213(1): 574–602, Apr. 2018. CrossrefGoogle Scholar
    • 47. I. Toulopoulos and J. A. Ekaterinaris . High-order discontinuous Galerkin discretizations for computational aeroacoustics in complex domains. AIAA Journal, 44(3): 502–511, 2006. CrossrefGoogle Scholar
    • 48. T. Toulorge and W. Desmet . CFL conditions for Runge–Kutta discontinuous Galerkin methods on triangular grids. Journal of Computational Physics, 230(12): 4657–4678, 2011. CrossrefGoogle Scholar
    • 49. L. N. Trefethen . Spectral Methods in MATLAB. Society for Industrial and Applied Mathematics, 2000. CrossrefGoogle Scholar
    • 50. K. van der Sande, D. Appelö, and N. Albin . Fourier continuation discontinuous Galerkin methods for linear hyperbolic problems. Communications on Applied Mathematics and Computation, 5(4): 1385–1405, 2023. CrossrefGoogle Scholar
    • 51. H. Vandeven . Family of spectral filters for discontinuous problems. Journal of Scientific Computing, 6: 159–192, 1991. CrossrefGoogle Scholar
    • 52. H. Wang, I. Sihar, R. Pagán Muñoz, and M. Hornikx . Room acoustics modelling in the time-domain with the nodal discontinuous Galerkin method. The Journal of the Acoustical Society of America, 145(4): 2650–2663, Apr. 2019. CrossrefGoogle Scholar
    • 53. T. Warburton . An explicit construction of interpolation nodes on the simplex. Journal of Engineering Mathematics, 56: 247–262, 2006. CrossrefGoogle Scholar