World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Recent Advances in Acoustic Boundary Element Methods

    https://doi.org/10.1142/S2591728522400023Cited by:23 (Source: Crossref)
    This article is part of the issue:

    The modern scope of boundary element methods (BEM) for acoustics is reviewed in this paper. Over the last decades the BEM has gained popularity despite suffering from shortcomings, such as fictitious eigenfrequencies and poor scalability due to its dense and frequency-dependent coefficient matrices. Recent research activities have been focused on alleviating these drawbacks to enhance BEM usability across industry and academia. This paper reviews what is commonly known as direct BEM for linear time-harmonic acoustics. After introducing the boundary integral formulation of the Helmholtz equation for interior and exterior acoustic problems, recommendations are given regarding the boundary meshing and treatment of the non-uniqueness problem. It is shown how frequency sweeps and modal analyses can be carried out with BEM. Further extensions for efficient modeling of large-scale problems, including fast BEM and solutions methods, are surveyed. Additionally, this review paper discusses new application areas for modern BEM, such as viscothermal wave propagation, surface contribution analyses, and simulation of periodically arranged structures as found in acoustic metamaterials.

    References

    • 1. A. D. Pierce, Acoustics: An Introduction to Its Physical Principles and Applications (Springer International Publishing, Cham, 2019), 3rd edition. CrossrefGoogle Scholar
    • 2. C. A. Brebbia, J. C. F. Telles and L. C. Wrobel, Boundary Element Techniques (Springer, Berlin Heidelberg, 1984). CrossrefGoogle Scholar
    • 3. S. Marburg and B. Nolte, eds., Computational Acoustics of Noise Propagation in Fluids. Finite and Boundary Element Methods (Springer, Berlin Heidelberg, 2008). CrossrefGoogle Scholar
    • 4. M. Kaltenbacher, ed., Computational Acoustics (Springer, Wien, 2018), 1st edition. CrossrefGoogle Scholar
    • 5. S. Kirkup, The boundary element method in acoustics: A survey, Applied Sciences 9 (2019) 1642. CrossrefGoogle Scholar
    • 6. K. U. I. Philip, M. Morse, Theoretical Acoustics (Princeton University Press, 1987). Google Scholar
    • 7. S. Marburg, Boundary element method for time–harmonic acoustic problems, in Computational Acoustics, ed. M. Kaltenbacher (Springer, Wien, 2018), CISM International Centre for Mechanical Sciences, ch. 3, pp. 69–159. CrossrefGoogle Scholar
    • 8. F. Ihlenburg, Finite Element Analysis of Acoustic Scattering, volume 132 of Applied Mathematical Sciences (Springer, Berlin Heidelberg New York, 1998). CrossrefGoogle Scholar
    • 9. S. Marburg and R. Anderssohn, Fluid structure interaction and admittance boundary conditions: Setup of an analytical example, Journal of Computational Acoustics 19 (2011) 63–74. LinkGoogle Scholar
    • 10. T. W. Wu, ed., Boundary Element Acoustics: Fundamentals and Computer Codes (WIT Press, Southampton, 2000). Google Scholar
    • 11. A. Bermúdez, L. Hervella-Nieto, A. Prieto and R. Rodríguez, An optimal perfectly matched layer with unbounded absorbing function for time-harmonic acoustic scattering problems, Journal of Computational Physics 223 (2007) 469–488. CrossrefGoogle Scholar
    • 12. H. Bériot and A. Modave, An automatic perfectly matched layer for acoustic finite element simulations in convex domains of general shape, International Journal for Numerical Methods in Engineering 122 (2021) 1239–1261. Google Scholar
    • 13. COMSOL AB, Stockholm, Sweden, Acoustics Module User’s Guide, COMSOL Multiphysics v. 6.0, 2021. Google Scholar
    • 14. Y. Liu, On the BEM for acoustic wave problems, Engineering Analysis with Boundary Elements 107 (2019) 53–62. CrossrefGoogle Scholar
    • 15. R. D. Ciskowski and C. A. Brebbia, eds., Boundary Elements in Acoustics (Computational Mechanics Publications and Elsevier Applied Science, Southampton Boston, 1991). Google Scholar
    • 16. S. Marburg, Conventional boundary element techniques: Recent developments and opportunities, in Proceedings of the 46th International Congress on Noise Control Engineering (INTERNOISE), eds. S. K. Tang, L. Cheng and C. W. Law (Hong Kong Polytechnic University, Hong Kong, China, 2017), pp. 2673–2688. Google Scholar
    • 17. K. E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind (Cambridge University Press, 1997), 1st edition. CrossrefGoogle Scholar
    • 18. S. Marburg, Six boundary elements per wavelength. Is that enough?, Journal of Computational Acoustics 10 (2002) 25–51. LinkGoogle Scholar
    • 19. S. Marburg and S. Schneider, Influence of element types on numeric error for acoustic boundary elements, Journal of Computational Acoustics 11 (2003) 363–386. LinkGoogle Scholar
    • 20. S. Marburg, Numerical damping in the acoustic boundary element method, Acta Acustica united with Acustica 102 (2016) 415–418. CrossrefGoogle Scholar
    • 21. S. Marburg, A pollution effect in the boundary element method for acoustic problems, Journal of Theoretical and Computational Acoustics 26 (2018) 1850018. LinkGoogle Scholar
    • 22. S. Marburg, Discretization requirements: How many elements per wavelength are necessary?, in Computational Acoustics of Noise Propagation in Fluids. Finite and Boundary Element Methods, eds. S. Marburg and B. Nolte (Springer, Berlin Heidelberg, 2008), ch. 11, pp. 309–332. CrossrefGoogle Scholar
    • 23. I. Harari, Dispersion, pollution, and resolution, in Computational Acoustics of Noise Propagation in Fluids. Finite and Boundary Element Methods, eds. S. Marburg and B. Nolte (Springer, Berlin Heidelberg, 2008), ch. 1, pp. 37–56. CrossrefGoogle Scholar
    • 24. J. J. d. Rego Silva, Acoustic and Elastic Wave Scattering Using Boundary Elements, volume 18 of Topics in Engineering (Computational Mechanics Publications, Southampton Boston, 1993). Google Scholar
    • 25. J. J. d. Rego Silva, L. C. Wrobel and J. C. F. Telles, A new family of continuous/discontinuous three–dimensional boundary elements with application to acoustic wave propagation, International Journal for Numerical Methods in Engineering 36 (1993) 1661–1679. CrossrefGoogle Scholar
    • 26. A. Tadeu and J. Antonio, Use of constant, linear and quadratic boundary elements in 3D wave diffraction analysis, Engineering Analysis with Boundary Elements 24 (2000) 131–144. CrossrefGoogle Scholar
    • 27. G. Chandler, Superconvergence of numerical solutions to second kind integral equations, Ph.D. thesis, Australian National University, Canberra, 1979. Google Scholar
    • 28. F. Chatelin and R. Lebbar, The iterated projection solution for the Fredholm integral equation of the second kind, Journal of the Australian Mathematical Society, Series B 22 (1981) 439–451. CrossrefGoogle Scholar
    • 29. S. Ramesh, K.-M. Lim and B. Khoo, Comparison of constant and discontinuous quadratic boundary elements for exterior axisymmetric acoustic-wave propagation problems, Journal of Computational Acoustics 23 (2015) 1540003. LinkGoogle Scholar
    • 30. S. Marburg and S. Amini, Cat’s eye radiation with boundary elements: Comparative study on treatment of irregular frequencies, Journal of Computational Acoustics 13 (2005) 21–45. LinkGoogle Scholar
    • 31. M. Peake, J. Trevelyan and G. Coates, Extended isogeometric boundary element method (XIBEM) for two-dimensional Helmholtz problems, Computer Methods in Applied Mechanics and Engineering 259 (2013) 93–102. CrossrefGoogle Scholar
    • 32. M. Peake, J. Trevelyan and G. Coates, Extended isogeometric boundary element method (XIBEM) for three-dimensional medium-wave acoustic scattering problems, Computer Methods in Applied Mechanics and Engineering 284 (2015) 762–780. CrossrefGoogle Scholar
    • 33. M. Peake, J. Trevelyan and G. Coates, Novel basis functions for the partition of unity boundary element method for Helmholtz problems, International Journal for Numerical Methods in Engineering 93 (2013) 905–918. CrossrefGoogle Scholar
    • 34. R. Simpson, M. Scott, M. Taus, D. Thomas and H. Lian, Acoustic isogeometric boundary element analysis, Computer Methods in Applied Mechanics and Engineering 269 (2014) 265–290. CrossrefGoogle Scholar
    • 35. S. Keuchel, N. Hagelstein, O. Zaleski and O. von Estorff, Evaluation of hypersingular and nearly singular integrals in the isogeometric boundary element method for acoustics, Computer Methods in Applied Mechanics and Engineering 325 (2017) 488–504. CrossrefGoogle Scholar
    • 36. Y. Sun, J. Trevelyan, G. Hattori and C. Lu, Discontinuous isogeometric boundary element (IGABEM) formulations in 3D automotive acoustics, Engineering Analysis with Boundary Elements 105 (2019) 303–311. CrossrefGoogle Scholar
    • 37. L. Chen, W. Zhao, C. Liu, H. Chen and S. Marburg, Isogeometric fast multipole boundary element method based on Burton-Miller formulation for 3D acoustic problems, Archives of Acoustics 44 (2019) 475–492. Google Scholar
    • 38. L. Chen, S. Marburg, W. Zhao, C. Liu and H. Chen, Implementation of isogeometric fast multipole boundary element methods for 2D half-space acoustic scattering problems with absorbing boundary condition, Journal of Theoretical and Computational Acoustics 27 (2019) 1850050. LinkGoogle Scholar
    • 39. L. Chen, Y. Zhang, H. Lian, E. Atroshchenko, C. Ding and S. Bordas, Seamless integration of computer-aided geometric modeling and acoustic simulation: Isogeometric boundary element methods based on catmull-clark subdivision surfaces, Advances in Engineering Software 149 (2020) 102888. CrossrefGoogle Scholar
    • 40. L. Chen, C. Lu, W. Zhao, H. Chen and C. Zheng, Subdivision surfaces — Boundary element accelerated by fast multipole for the structural acoustic problem, Journal of Theoretical and Computational Acoustics 28 (2020) 2050011. LinkGoogle Scholar
    • 41. E. Inci, L. Coox, O. Atak, E. Deckers and W. Desmet, Applications of an isogeometric indirect boundary element method and the importance of accurate geometrical representation in acoustic problems, Engineering Analysis with Boundary Elements 110 (2020) 124–136. CrossrefGoogle Scholar
    • 42. Z. Liu, M. Majeed, F. Cirak and R. N. Simpson, Isogeometric FEM-BEM coupled structural-acoustic analysis of shells using subdivision surfaces, International Journal for Numerical Methods in Engineering 113 (2018) 1507–1530. CrossrefGoogle Scholar
    • 43. Y. Wu, C. Dong, H. Yang and F. Sun, Isogeometric symmetric FE-BE coupling method for acoustic-structural interaction, Applied Mathematics and Computation 393 (2021) 125758. CrossrefGoogle Scholar
    • 44. J. Wang, C. Zheng, L. Chen and H. Chen, Acoustic shape optimization based on isogeometric wideband fast multipole boundary element method with adjoint variable method, Journal of Theoretical and Computational Acoustics 28 (2020) 2050015. LinkGoogle Scholar
    • 45. A. Shaaban, C. Anitescu, E. Atroshchenko and T. Rabczuk, An isogeometric Burton-Miller method for the transmission loss optimization with application to mufflers with internal extended tubes, Applied Acoustics 185 (2022) 108410. CrossrefGoogle Scholar
    • 46. L. Chen, H. Lian, S. Natarajan, W. Zhao, X. Chen and S. Bordas, Multi-frequency acoustic topology optimization of sound-absorption materials with isogeometric boundary element methods accelerated by frequency-decoupling and model order reduction techniques, Computer Methods in Applied Mechanics and Engineering 395 (2022) 114997. CrossrefGoogle Scholar
    • 47. L. L. Thompson and P. M. Pinsky, Complex wavenumber Fourier analysis of the p–version finite element method, Computational Mechanics 13 (1994) 255–275. CrossrefGoogle Scholar
    • 48. S. Keuchel, K. Vater and O. Estorff, hp Fast multipole boundary element method for 3D acoustics, International Journal for Numerical Methods in Engineering 110 (2017) 842–861. CrossrefGoogle Scholar
    • 49. B. Gilvey and J. Trevelyan, A comparison of high-order and plane wave enriched boundary element basis functions for Helmholtz problems, Engineering Analysis with Boundary Elements 122 (2021) 190–201. CrossrefGoogle Scholar
    • 50. S. Marburg, Explicit frequency dependent matrices in the BE formulation, in Proceedings of the 27th International Congress on Noise Control Engineering (INTERNOISE), eds, V. C. Goodwin and D. C. Stevenson (New Zealand Acoustical Society Inc., Christchurch, New Zealand, 1998), pp. 1533–1536. Google Scholar
    • 51. J. Fahnline, Numerical difficulties with boundary element solutions of interior acoustic problems, Journal of Sound and Vibration 319 (2009) 1083–1096. CrossrefGoogle Scholar
    • 52. D. Nardini and C. A. Brebbia, Boundary integral formulation of mass matrix for dynamic analysis, in Time–Dependent and Vibration Problems, ed. C. A. Brebbia (Springer, 1985), volume 2 of Topics in Boundary Element Research, ch. 7. Google Scholar
    • 53. P. K. Banerjee, S. Ahmad and H. C. Wang, A new BEM formulation for the acoustic eigenfrequency analysis, International Journal for Numerical Methods in Engineering 26 (1988) 1299–1309. CrossrefGoogle Scholar
    • 54. Z. S. Chen, G. Hofstetter and H. A. Mang, A 3D boundary element method for determination of acoustic eigenfrequencies considering admittance boundary conditions, Journal of Computational Acoustics 1 (1993) 455–468. LinkGoogle Scholar
    • 55. F. Mattioli, Numerical instabilities of the integral approach to the interior boundary–value problem for the two–dimensional Helmholtz equation, International Journal for Numerical Methods in Engineering 15 (1980) 1303–1313. CrossrefGoogle Scholar
    • 56. S. Kuo, J. Chen and C. Huang, Analytical study and numerical experiments for true and spurious eigensolutions of a circular cavity using the real-part dual BEM, International Journal for Numerical Methods in Engineering 48 (2000) 1401–1422. CrossrefGoogle Scholar
    • 57. C.-J. Zheng, H.-B. Chen, H.-F. Gao and L. Du, Is the Burton-Miller formulation really free of fictitious eigenfrequencies?, Engineering Analysis with Boundary Elements 59 (2015) 43–51. CrossrefGoogle Scholar
    • 58. J. Galkowski and E. A. Spence, Does the Helmholtz boundary element method suffer from the pollution effect? (2022), arXiv:2201.09721 Preprint. Google Scholar
    • 59. J. Galkowski, E. Müller and E. Spence, Wavenumber-explicit analysis for the Helmholtz h-BEM: Error estimates and iteration counts for the Dirichlet problem, Numerische Mathematik 142 (2019) 329–357. CrossrefGoogle Scholar
    • 60. S. K. Baydoun and S. Marburg, Quantification of numerical damping in the acoustic boundary element method for two-dimensional duct problems, Journal of Theoretical and Computational Acoustics 26 (2018) 1850022. LinkGoogle Scholar
    • 61. J. Chen, S. Lin and J. Tsai, Fictitious frequency revisited, Engineering Analysis with Boundary Elements 33 (2009) 1289–1301. CrossrefGoogle Scholar
    • 62. S. Marburg and T. W. Wu, Treating the phenomenon of irregular frequencies, in Computational Acoustics of Noise Propagation in Fluids. Finite and Boundary Element Methods, eds. S. Marburg and B. Nolte (Springer, Berlin Heidelberg, 2008), ch. 15, pp. 411–434. CrossrefGoogle Scholar
    • 63. S. Marburg, The Burton and Miller method: Unlocking another mystery of its coupling parameter, Journal of Computational Acoustics 24 (2016) 1550016. LinkGoogle Scholar
    • 64. H. A. Schenck, Improved integral formulation for acoustic radiation problems, Journal of the Acoustical Society of America 44 (1968) 41–58. CrossrefGoogle Scholar
    • 65. A. J. Burton and G. F. Miller, The application of integral equation methods to the numerical solution of some exterior boundary–value problems, Proceedings of the Royal Society of London 323 (1971) 201–220. Google Scholar
    • 66. H. Brakhage and P. Werner, Über das Dirichlet’sche Außenraumproblem für die Helmholtz’sche Schwingungsgleichung, Archiv der Mathematik 16 (1965) 325–329. CrossrefGoogle Scholar
    • 67. O. I. Panič, K voprosu o razrešimosti vnešnich kraevich zadač dlja volnovogo uravnenija i dlja sistemi uravnenij MAXWELL a, Uspechi Mathematiceskich Nauk 20 (1965) 221–226. Google Scholar
    • 68. G. Diwan, J. Trevelyan and G. Coates, A comparison of techniques for overcoming non-uniqueness of boundary integral equations for the collocation partition of unity method in two-dimensional acoustic scattering, International Journal for Numerical Methods in Engineering 96 (2013) 645–664. CrossrefGoogle Scholar
    • 69. J. Chen, I. Chen and K. Chen, Treatment of rank deficiency in acoustics using SVD, Journal of Computational Acoustics 14 (2006) 157–183. LinkGoogle Scholar
    • 70. F. Hu, M. Pizzo and D. Nark, On a time domain boundary integral equation formulation for acoustic scattering by rigid bodies in uniform mean flow, Journal of the Acoustical Society of America 142 (2017) 3624–3636. CrossrefGoogle Scholar
    • 71. K. Matsushima, H. Isakari, T. Takahashi and T. Matsumoto, An investigation of eigenfrequencies of boundary integral equations and the Burton-Miller formulation in two-dimensional elastodynamics, International Journal of Computational Methods and Experimental Measurements 6 (2018) 1127–1137. CrossrefGoogle Scholar
    • 72. M. Guiggiani, G. Krishnasamy, T. J. Rudolphi and F. J. Rizzo, A general algorithm for the numerical solution of hypersingular boundary integral equations, ASME Journal of Applied Mechanics 59 (1992) 604–614. CrossrefGoogle Scholar
    • 73. M. Guiggiani, Formulation and numerical treatment of boundary integral equations with hypersingular kernels, in Singular Integrals in Boundary Element Methods, eds. V. Sladek and J. Sladek (Computational Mechanics Publications, 1998), ch. 3, pp. 85–124. Google Scholar
    • 74. P. Marchand, J. Galkowski, E. A. Spence and A. Spence, Applying GMRES to the Helmholtz equation with strong trapping: how does the number of iterations depend on the frequency?, Advances in Computational Mathematics 48 (2022) 37. CrossrefGoogle Scholar
    • 75. S. Chandler-Wilde and E. Spence, Coercivity, essential norms, and the Galerkin method for second-kind integral equations on polyhedral and Lipschitz domains, Numerische Mathematik 150 (2022) 299–371. CrossrefGoogle Scholar
    • 76. J. Galkowski, P. Marchand and E. Spence, Eigenvalues of the truncated Helmholtz solution operator under strong trapping, SIAM Journal on Mathematical Analysis 53 (2021) 6724–6770. CrossrefGoogle Scholar
    • 77. D. Lafontaine, E. Spence and J. Wunsch, For most frequencies, strong trapping has a weak effect in frequency-domain scattering, Communications on Pure and Applied Mathematics 74 (2021) 2025–2063. CrossrefGoogle Scholar
    • 78. X. Chen, Q. He, C.-J. Zheng, C. Wan, C.-X. Bi and B. Wang, A parameter study of the Burton-Miller formulation in the BEM analysis of acoustic resonances in exterior configurations, Journal of Theoretical and Computational Acoustics 29 (2021) 2050023. LinkGoogle Scholar
    • 79. C.-J. Zheng, C.-X. Bi, C. Zhang, Y.-B. Zhang and H.-B. Chen, Fictitious eigenfrequencies in the BEM for interior acoustic problems, Engineering Analysis with Boundary Elements 104 (2019) 170–182. CrossrefGoogle Scholar
    • 80. I. Harari and T. J. R. Hughes, A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics, Computer Methods in Applied Mechanics and Engineering 97 (1992) 77–102. CrossrefGoogle Scholar
    • 81. J.-P. Coyette, C. Lecomte, J.-L. Migeot, J. Blanche, M. Rochette and G. Mirkovic, Calculation of vibro-acoustic frequency response functions using a single frequency boundary element solution and a Padé expansion, Acta Acustica united with Acustica 85 (1999) 371–377. Google Scholar
    • 82. H. Jiang, S. Zhong, X. Zhang and X. Huang, Efficient storage and interpolation of acoustic transfer functions, Engineering Analysis with Boundary Elements 124 (2021) 259–265. CrossrefGoogle Scholar
    • 83. S. M. Kirkup and D. J. Henwood, Methods for speeding up the boundary element solutions of acoustic radiation problems, Journal of Vibration and Acoustics 144 (1992) 347–380. Google Scholar
    • 84. C. Effenberger and D. Kressner, Chebyshev interpolation for nonlinear eigenvalue problems, BIT Numerical Mathematics 52 (2012) 933–951. CrossrefGoogle Scholar
    • 85. J. Xiao, J. Wang, T. Liang and L. Wen, The RSRR method for solving large-scale nonlinear eigenvalue problems in boundary element method, Engineering Analysis with Boundary Elements 93 (2018) 150–160. CrossrefGoogle Scholar
    • 86. D. Panagiotopoulos, E. Deckers and W. Desmet, Krylov subspaces recycling based model order reduction for acoustic BEM systems and an error estimator, Computer Methods in Applied Mechanics and Engineering 359 (2020) 112755. CrossrefGoogle Scholar
    • 87. X. Xie and Y. Liu, An adaptive model order reduction method for boundary element-based multi-frequency acoustic wave problems, Computer Methods in Applied Mechanics and Engineering 373 (2021) 113532. CrossrefGoogle Scholar
    • 88. H. Peters, N. Kessissoglou and S. Marburg, Modal decomposition of exterior acoustic-structure interaction, Journal of the Acoustical Society of America 133 (2013) 2668–2677. CrossrefGoogle Scholar
    • 89. M. El-Guide, A. Miȩdlar and Y. Saad, A rational approximation method for solving acoustic nonlinear eigenvalue problems, Engineering Analysis with Boundary Elements 111 (2020) 44–54. CrossrefGoogle Scholar
    • 90. S. K. Baydoun, M. Voigt and S. Marburg, Low-rank iteration schemes for the multi-frequency solution of acoustic boundary element equations, Journal of Theoretical and Computational Acoustics 29 (2021) 2150004. LinkGoogle Scholar
    • 91. S. Dirckx, D. Huybrechs and K. Meerbergen, Frequency extraction for BEM-matrices arising from the 3D scalar Helmholtz equation (2022), arXiv:2012.14287, Preprint. Google Scholar
    • 92. S. Lefteriu, M. Souza Lenzi, H. Bériot, M. Tournour and W. Desmet, Fast frequency sweep method for indirect boundary element models arising in acoustics, Engineering Analysis with Boundary Elements 69 (2016) 32–45. CrossrefGoogle Scholar
    • 93. S. K. Baydoun, M. Voigt, C. Jelich and S. Marburg, A greedy reduced basis scheme for multifrequency solution of structural acoustic systems, International Journal for Numerical Methods in Engineering 121 (2020) 187–200. CrossrefGoogle Scholar
    • 94. C. Jelich, S. K. Baydoun, M. Voigt and S. Marburg, A greedy reduced basis algorithm for structural acoustic systems with parameter and implicit frequency dependence, International Journal for Numerical Methods in Engineering 122 (2021) 7409–7430. CrossrefGoogle Scholar
    • 95. D. Panagiotopoulos, W. Desmet and E. Deckers, An automatic Krylov subspaces recycling technique for the construction of a global solution basis of non-affine parametric linear systems, Computer Methods in Applied Mechanics and Engineering 373 (2021) 113510. CrossrefGoogle Scholar
    • 96. S. M. Kirkup and S. Amini, Solution of the Helmholtz eigenvalue problem via the boundary element method, International Journal for Numerical Methods in Engineering 36 (1993) 321–330. CrossrefGoogle Scholar
    • 97. H. Peters, N. Kessissoglou and S. Marburg, Modal decomposition of exterior acoustic-structure interaction problems with model order reduction, Journal of the Acoustical Society of America 135 (2014) 2706–2717. CrossrefGoogle Scholar
    • 98. S. K. Baydoun, M. Voigt, B. Goderbauer, C. Jelich and S. Marburg, A subspace iteration eigensolver based on Cauchy integrals for vibroacoustic problems in unbounded domains, International Journal for Numerical Methods in Engineering 122 (2021) 4250–4269. CrossrefGoogle Scholar
    • 99. C.-J. Zheng, H.-F. Gao, L. Du, H.-B. Chen and C. Zhang, An accurate and efficient acoustic eigensolver based on a fast multipole BEM and a contour integral method, Journal of Computational Physics 305 (2016) 677–699. CrossrefGoogle Scholar
    • 100. F. Kronowetter, S. K. Baydoun, M. Eser, L. Moheit and S. Marburg, A benchmark study on eigenfrequencies of fluid-loaded structures, Journal of Theoretical and Computational Acoustics 28 (2020) 2050013. LinkGoogle Scholar
    • 101. T. Liang, J. Wang, J. Xiao and L. Wen, Coupled BE-FE based vibroacoustic modal analysis and frequency sweep using a generalized resolvent sampling method, Computer Methods in Applied Mechanics and Engineering 345 (2019) 518–538. CrossrefGoogle Scholar
    • 102. T. Sakuma, S. Schneider and Y. Yasuda, Fast solution methods, in Computational Acoustics of Noise Propagation in Fluids. Finite and Boundary Element Methods, eds. S. Marburg and B. Nolte (Springer, Berlin, Heidelberg, 2008), pp. 333–366. CrossrefGoogle Scholar
    • 103. L. Greengard and V. Rokhlin, A fast algorithm for particle simulations, Journal of Computational Physics 73 (1987) 325–348. CrossrefGoogle Scholar
    • 104. V. Rokhlin, Rapid solution of integral equations of scattering theory in two dimensions, Journal of Computational Physics 86 (1990) 414–439. CrossrefGoogle Scholar
    • 105. V. Rokhlin, Diagonal forms of translation operators for the Helmholtz equation in three dimensions, Applied and Computational Harmonic Analysis 1 (1993) 82–93. CrossrefGoogle Scholar
    • 106. E. Darve, The fast multipole method I: Error analysis and asymptotic complexity, SIAM Journal on Numerical Analysis 38 (2000) 98–128. CrossrefGoogle Scholar
    • 107. E. Darve, The fast multipole method: Numerical implementation, Journal of Computational Physics 160 (2000) 195–240. CrossrefGoogle Scholar
    • 108. R. Coifman, V. Rokhlin and S. Wandzura, The fast multipole method for the wave equation: A pedestrian prescription, IEEE Antennas and Propagation Magazine 35 (1993) 7–12. CrossrefGoogle Scholar
    • 109. N. A. Gumerov and R. Duraiswami, Fast Multipole Methods for the Helmholtz Equation in Three Dimensions, Elsevier Series in Electromagnetism (Elsevier, 2004). Google Scholar
    • 110. Y. Liu, Fast Multipole Boundary Element Method: Theory and Applications in Engineering (Cambridge University Press, 2009). CrossrefGoogle Scholar
    • 111. H. Harbrecht and M. Peters, Comparison of fast boundary element methods on parametric surfaces, Computer Methods in Applied Mechanics and Engineering 261-262 (2013) 39–55. CrossrefGoogle Scholar
    • 112. M. Bebendorf, Approximation of boundary element matrices, Numerische Mathematik 86 (2000) 565–589. CrossrefGoogle Scholar
    • 113. M. Bebendorf and S. Rjasanow, Adaptive low-rank approximation of collocation matrices, Computing 70 (2003) 1–24. CrossrefGoogle Scholar
    • 114. S. Kurz, O. Rain and S. Rjasanow, The adaptive cross-approximation technique for the 3D boundary-element method, IEEE Transactions on Magnetics 38 (2002) 421–424. CrossrefGoogle Scholar
    • 115. D. Brunner, M. Junge, P. Rapp, M. Bebendorf and L. Gaul, Comparison of the fast multipole method with hierarchical matrices for the Helmholtz-BEM, Computer Modeling in Engineering & Sciences 58 (2010) 131–160. Google Scholar
    • 116. J. R. Phillips and J. K. White, A precorrected-FFT method for electrostatic analysis of complicated 3-D structures, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 16 (1997) 1059–1072. CrossrefGoogle Scholar
    • 117. J. Tausch, Sparse BEM for potential theory and Stokes flow using variable order wavelets, Computational Mechanics 32 (2003) 312–318. CrossrefGoogle Scholar
    • 118. G. Beylkin, R. Coifman and V. Rokhlin, Fast wavelet transforms and numerical algorithms, in Fundamental Papers in Wavelet Theory (Princeton University Press, 2009), pp. 741–783. Google Scholar
    • 119. C. Bauinger and O. P. Bruno, “Interpolated factored green function” method for accelerated solution of scattering problems, Journal of Computational Physics 430 (2021) 110095. CrossrefGoogle Scholar
    • 120. E. Jimenez, C. Bauinger and O. P. Bruno, IFGF-accelerated integral equation solvers for acoustic scattering (2021), arXiv:2112.06316, Preprint. Google Scholar
    • 121. L. Greengard, J. Huang, V. Rokhlin and S. Wandzura, Accelerating fast multipole methods for the Helmholtz equation at low frequencies, IEEE Computational Science and Engineering 5 (1998) 32–38. CrossrefGoogle Scholar
    • 122. B. Engquist and L. Ying, Fast directional algorithms for the Helmholtz kernel, Journal of Computational and Applied Mathematics 234 (2010) 1851–1859. CrossrefGoogle Scholar
    • 123. M. Messner, M. Schanz and E. Darve, Fast directional multilevel summation for oscillatory kernels based on Chebyshev interpolation, Journal of Computational Physics 231 (2012) 1175–1196. CrossrefGoogle Scholar
    • 124. L. Banjai and W. Hackbusch, Hierarchical matrix techniques for low- and high-frequency Helmholtz problems, IMA Journal of Numerical Analysis 28 (2007) 46–79. CrossrefGoogle Scholar
    • 125. N. A. Gumerov and R. Duraiswami, A broadband fast multipole accelerated boundary element method for the three dimensional Helmholtz equation, The Journal of the Acoustical Society of America 125 (2009) 191–205. CrossrefGoogle Scholar
    • 126. D. R. Wilkes, A. J. Duncan and S. Marburg, A parallel and broadband Helmholtz FMBEM model for large-scale target strength modeling, Journal of Theoretical and Computational Acoustics 28 (2020) 2050001. LinkGoogle Scholar
    • 127. M. S. Bapat, L. Shen and Y. J. Liu, Adaptive fast multipole boundary element method for three-dimensional half-space acoustic wave problems, Engineering Analysis with Boundary Elements 33 (2009) 1113–1123. CrossrefGoogle Scholar
    • 128. Y. Yasuda, K. Higuchi, T. Oshima and T. Sakuma, Efficient technique in low-frequency fast multipole boundary element method for plane-symmetric acoustic problems, Engineering Analysis with Boundary Elements 36 (2012) 1493–1501. CrossrefGoogle Scholar
    • 129. C.-J. Zheng, W.-Y. Liu, Y.-B. Zhang, C.-X. Bi, H.-F. Gao and H.-B. Chen, Simulation of sound propagation over an infinite impedance plane by using a fast multipole BEM, Journal of Theoretical and Computational Acoustics 28 (2020) 2050020. LinkGoogle Scholar
    • 130. M. H. Cho and A. H. Barnett, Robust fast direct integral equation solver for quasi-periodic scattering problems with a large number of layers, Optics Express 23 (2015) 1775. CrossrefGoogle Scholar
    • 131. B. Wang, D. Chen, B. Zhang, W. Zhang, M. H. Cho and W. Cai, Taylor expansion based fast multipole method for 3-D Helmholtz equations in layered media, Journal of Computational Physics 401 (2020) 109008. CrossrefGoogle Scholar
    • 132. T. Takahashi and T. Hamada, GPU-accelerated boundary element method for Helmholtz equation in three dimensions, International Journal for Numerical Methods in Engineering 80 (2009) 1295–1321. CrossrefGoogle Scholar
    • 133. T. Wang, R. Yokota and L. Barba, ExaFMM: A high-performance fast multipole method library with C++ and Python interfaces, Journal of Open Source Software 6 (2021) 3145. CrossrefGoogle Scholar
    • 134. P. Amado-Mendes, L. Godinho, J. Carbajo and J. Ramis-Soriano, Numerical modelling of finite periodic arrays of acoustic resonators using an efficient 3D BEM model, Engineering Analysis with Boundary Elements 102 (2019) 73–86. CrossrefGoogle Scholar
    • 135. N. Yoshii, Y. Andoh and S. Okazaki, Fast multipole method for three-dimensional systems with periodic boundary condition in two directions, Journal of Computational Chemistry 41 (2020) 940–948. CrossrefGoogle Scholar
    • 136. P. G. Martinsson and V. Rokhlin, A fast direct solver for boundary integral equations in two dimensions, Journal of Computational Physics 205 (2005) 1–23. CrossrefGoogle Scholar
    • 137. T. Takahashi, P. Coulier and E. Darve, Application of the inverse fast multipole method as a preconditioner in a 3D Helmholtz boundary element method, Journal of Computational Physics 341 (2017) 406–428. CrossrefGoogle Scholar
    • 138. M. Shen and W. Cao, Acoustic bandgap formation in a periodic structure with multilayer unit cells, Journal of Physics D: Applied Physics 33 (2000) 1150–1154. CrossrefGoogle Scholar
    • 139. C. Gurbuz, F. Kronowetter, C. Dietz, M. Eser, J. Schmid and S. Marburg, Generative adversarial networks for the design of acoustic metamaterials, The Journal of the Acoustical Society of America 149 (2021) 1162–1174. CrossrefGoogle Scholar
    • 140. N. Jiménez, O. Umnova and J.-P. Groby, eds., Acoustic Waves in Periodic Structures, Metamaterials, and Porous Media (Springer International Publishing, 2021). CrossrefGoogle Scholar
    • 141. M. I. Hussein, M. J. Leamy and M. Ruzzene, Dynamics of phononic materials and structures: Historical origins, recent progress, and future outlook, Applied Mechanics Review 66 (2014) 040802. CrossrefGoogle Scholar
    • 142. H. Isakari, T. Takahashi and T. Matsumoto, Periodic band structure calculation by the Sakurai-Sugiura method with a fast direct solver for the boundary element method with the fast multipole representation, Engineering Analysis with Boundary Elements 68 (2016) 42–53. CrossrefGoogle Scholar
    • 143. H. Gao, L. Chen, H. Lian, C. Zheng, H. Xu and T. Matsumoto, Band structure analysis for 2D acoustic phononic structure using isogeometric boundary element method, Advances in Engineering Software 149 (2020) 102888. CrossrefGoogle Scholar
    • 144. Y. W. Lam, A boundary integral formulation for the prediction of acoustic scattering from periodic structures, The Journal of the Acoustical Society of America 105 (1999) 762–769. CrossrefGoogle Scholar
    • 145. S. M. B. Fard, H. Peters, N. Kessissoglou and S. Marburg, Three-dimensional analysis of a noise barrier using a quasi-periodic boundary element method, The Journal of the Acoustical Society of America 137 (2015) 3107–3114. CrossrefGoogle Scholar
    • 146. S. B. Fard, H. Peters, S. Marburg and N. Kessissoglou, Acoustic performance of a barrier embedded with Helmholtz resonators using a quasi-periodic boundary element technique, Acta Acustica United with Acustica 103 (2017) 444–450. CrossrefGoogle Scholar
    • 147. P. Jean and J. Defrance, Sound propagation in rows of cylinders of infinite extent: Application to sonic crystals and thickets along roads, Acta Acustica United with Acustica 101 (2015) 474–483. CrossrefGoogle Scholar
    • 148. V. Rokhlin and S. Wandzura, The fast multipole method for periodic structures, in Proceedings of IEEE Antennas and Propagation Society International Symposium and URSI National Radio Science Meeting (IEEE, Seattle, USA, 1994), pp. 424–426. CrossrefGoogle Scholar
    • 149. M. Challacombe, C. White and M. Head-Gordon, Periodic boundary conditions and the fast multipole method, The Journal of Chemical Physics 107 (1997) 10131–10140. CrossrefGoogle Scholar
    • 150. N. A. Gumerov and R. Duraiswami, A method to compute periodic sums, Journal of Computational Physics 272 (2014) 307–326. CrossrefGoogle Scholar
    • 151. Y. Otani and N. Nishimura, An FMM for periodic boundary value problems for cracks for Helmholtz equation in 2D, International Journal for Numerical Methods in Engineering 73 (2007) 381–406. CrossrefGoogle Scholar
    • 152. K. Niino and N. Nishimura, Preconditioning based on Calderon’s formulae for periodic fast multipole methods for Helmholtz’ equation, Journal of Computational Physics 231 (2012) 66–81. CrossrefGoogle Scholar
    • 153. H. Ziegelwanger, P. Reiter and M. Conter, The three-dimensional quasi-periodic boundary element method: Implementation, evaluation, and use cases, International Journal of Computational Methods and Experimental Measurements 5 (2017) 404–414. CrossrefGoogle Scholar
    • 154. D. Duhamel, Efficient calculation of the three-dimensional sound pressure field around a noise barrier, Journal of Sound and Vibration 197 (1996) 547–571. CrossrefGoogle Scholar
    • 155. X. D. Song, Q. Li and D. J. Wu, Investigation of rail noise and bridge noise using a combined 3D dynamic model and 2.5D acoustic model, Applied Acoustics 109 (2016) 5–17. CrossrefGoogle Scholar
    • 156. Q. Li, D. Duhamel, Y. Luo and H. Yin, Analysing the acoustic performance of a nearly-enclosed noise barrier using scale model experiments and a 2.5-D BEM approach, Applied Acoustics 158 (2020) 107079. CrossrefGoogle Scholar
    • 157. L. Moheit, S. Anthis, J. Heinz, F. Kronowetter and S. Marburg, Analysis of scattering by finite sonic crystals in free field with infinite elements and normal modes, Journal of Sound and Vibration 476 (2020) 115291. CrossrefGoogle Scholar
    • 158. M. Karimi, P. Croaker and N. Kessissoglou, Boundary element solution for periodic acoustic problems, Journal of Sound and Vibration 360 (2016) 129–139. CrossrefGoogle Scholar
    • 159. M. Karimi, P. Croaker, N. Peake and N. Kessissoglou, Acoustic scattering for rotational and translational symmetric structures in nonuniform potential flow, AIAA Journal 55 (2017) 3318–3327. CrossrefGoogle Scholar
    • 160. M. Karimi, P. Croaker and N. Kessissoglou, Acoustic scattering for 3D multi-directional periodic structures using the boundary element method, The Journal of the Acoustical Society of America 141 (2017) 313–323. CrossrefGoogle Scholar
    • 161. C. Jelich, W. Zhao, H. Chen and S. Marburg, Fast multipole boundary element method for the acoustic analysis of finite periodic structures, Computer Methods in Applied Mechanics and Engineering 391 (2022) 114528. CrossrefGoogle Scholar
    • 162. G. H. Golub and C. F. Van Loan, Matrix Computations (Johns Hopkins University Press, 1989). Google Scholar
    • 163. Y. Saad, Iterative Methods for Sparse Linear Systems (Society for Industrial and Applied Mathematics, 2003). CrossrefGoogle Scholar
    • 164. M. H. Gutknecht, Block Krylov space methods for linear systems with multiple right-hand sides: An introduction, in Modern Mathematical Models, Methods and Algorithms for Real World Systems, eds. A. H. Siddiqi, I. Duff and O. Christensen (Anamaya Publishers, 2007), pp. 1–22. Google Scholar
    • 165. C. Jelich, M. Karimi, N. Kessissoglou and S. Marburg, Efficient solution of block Toeplitz systems with multiple right-hand sides arising from a periodic boundary element formulation, Engineering Analysis with Boundary Elements 130 (2021) 135–144. CrossrefGoogle Scholar
    • 166. S. Marburg and S. Schneider, Performance of iterative solvers for acoustic problems. Part I. Solvers and effect of diagonal preconditioning, Engineering Analysis with Boundary Elements 27 (2003) 727–750. CrossrefGoogle Scholar
    • 167. S. Schneider and S. Marburg, Performance of iterative solvers for acoustic problems. Part II. Acceleration by ILU-type preconditioner, Engineering Analysis with Boundary Elements 27 (2003) 751–757. CrossrefGoogle Scholar
    • 168. M. Bebendorf, Hierarchical LU decomposition-based preconditioners for BEM, Computing 74 (2004) 225–247. CrossrefGoogle Scholar
    • 169. T. Takahashi, C. Chen and E. Darve, Parallelization of the inverse fast multipole method with an application to boundary element method, Computer Physics Communications 247 (2020) 106975. CrossrefGoogle Scholar
    • 170. S. Chaillat, L. Desiderio and P. Ciarlet, Theory and implementation of H-matrix based iterative and direct solvers for Helmholtz and elastodynamic oscillatory kernels, Journal of Computational Physics 351 (2017) 165–186. CrossrefGoogle Scholar
    • 171. W. Y. Kong, J. Bremer and V. Rokhlin, An adaptive fast direct solver for boundary integral equations in two dimensions, Applied and Computational Harmonic Analysis 31 (2011) 346–369. CrossrefGoogle Scholar
    • 172. P. G. Martinsson, A fast randomized algorithm for computing a hierarchically semiseparable representation of a matrix, SIAM Journal on Matrix Analysis and Applications 32 (2011) 1251–1274. CrossrefGoogle Scholar
    • 173. K. L. Ho and L. Greengard, A fast direct solver for structured linear systems by recursive skeletonization, SIAM Journal on Scientific Computing 34 (2012) A2507–A2532. CrossrefGoogle Scholar
    • 174. E. Corona, P.-G. Martinsson and D. Zorin, An O(n) direct solver for integral equations on the plane, Applied and Computational Harmonic Analysis 38 (2015) 284–317. CrossrefGoogle Scholar
    • 175. D. Sushnikova, L. Greengard, M. O’Neil and M. Rachh, FMM-LU: A fast direct solver for multiscale boundary integral equations in three dimensions (2022), arXiv:2201.07325, Preprint. Google Scholar
    • 176. P. R. Andersen, V. Cutanda Henríquez and N. Aage, Shape optimization of micro-acoustic devices including viscous and thermal losses, Journal of Sound and Vibration 447 (2019) 120–136. CrossrefGoogle Scholar
    • 177. V. Cutanda Henríquez and P. R. Andersen, A three-dimensional acoustic boundary element method formulation with viscous and thermal losses based on shape function derivatives, Journal of Theoretical and Computational Acoustics 26 (2018) 1850039. LinkGoogle Scholar
    • 178. V. Cutanda Henríquez, P. R. Andersen, J. S. Jensen, P. M. Juhl and J. Sánchez-Dehesa, A numerical model of an acoustic metamaterial using the boundary element method including viscous and thermal losses, Journal of Computational Acoustics 25 (2017) 1750006. LinkGoogle Scholar
    • 179. V. Cutanda Henríquez, V. M. García-Chocano and J. Sánchez-Dehesa, Viscothermal losses in double-negative acoustic metamaterials, Physical Review Applied 8 (2017) 014029. CrossrefGoogle Scholar
    • 180. V. Cutanda Henríquez and J. Sánchez-Dehesa, Viscothermal effects in a two-dimensional acoustic black hole: A boundary element approach, Physical Review Applied 15 (2021) 064057. CrossrefGoogle Scholar
    • 181. C. Gurbuz, J. D. Schmid, M. Luegmair and S. Marburg, Energy density-based non-negative surface contributions in interior acoustics, Journal of Sound and Vibration 527 (2022) 116824. CrossrefGoogle Scholar
    • 182. J. M. Schmid, E. Fernandez-Grande, M. Hahmann, C. Gurbuz, M. Eser and S. Marburg, Spatial reconstruction of the sound field in a room in the modal frequency range using Bayesian inference, The Journal of the Acoustical Society of America 150 (2021) 4385–4394. CrossrefGoogle Scholar
    • 183. G. Kirchhoff, Über den Einfluss der Wärmeleitung in einem Gase auf die Schallbewegung, Annalen der Physik und Chemie 210 (1868) 177–193. CrossrefGoogle Scholar
    • 184. C. Zwikker and C. W. Kosten, Sound Absorbing Materials (Elsevier Pub. Co., New York, 1949). Google Scholar
    • 185. W. M. Beltman, P. J. M. van der Hoogt, R. M. E. J. Spiering and H. Tijdeman, Implementation and experimental validation for a new viscothermal acoustic finite element method for acousto-elastic problems, Journal of Sound and Vibration 216 (1998) 159–185. CrossrefGoogle Scholar
    • 186. H. Tijdeman, On the propagation of sound waves in cylindrical tubes, Journal of Sound and Vibration 39 (1975) 1–33. CrossrefGoogle Scholar
    • 187. M. Berggren, A. Bernland and D. Noreland, Acoustic boundary layers as boundary conditions, Journal of Computational Physics 371 (2018) 633–650. CrossrefGoogle Scholar
    • 188. R. Bossart, N. Joly and M. Bruneau, Hybrid numerical and analytical solutions for acoustic boundary problems in thermo-viscous fluids, Journal of Sound and Vibration 263 (2003) 69–84. CrossrefGoogle Scholar
    • 189. K. Schmidt and A. Thöns-Zueva, Impedance boundary conditions for acoustic time-harmonic wave propagation in viscous gases in two dimensions, Mathematical Methods in the Applied Sciences 45 (2022) 7404–7425. CrossrefGoogle Scholar
    • 190. N. A. Jean and F. Allard, Propagation of Sound in Porous Media (John Wiley & Sons, 2009). Google Scholar
    • 191. E. Sarradj, Multi-domain boundary element method for sound fields in and around porous absorbers, Acta Acustica united with Acustica 89 (2003) 21–27. Google Scholar
    • 192. N. Jiménez, T. J. Cox, V. Romero-García and J.-P. Groby, Metadiffusers: Deep-subwavelength sound diffusers, Scientific Reports 7 (2017) 5389. CrossrefGoogle Scholar
    • 193. M. Malinen, M. Lyly, P. Råback, A. Kärkkäinen and L. Kärkkäinen, A finite element method for the modeling of thermo-viscous effects in acoustics, in Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS), eds. P. Neittaanmäki, T. Rossi, K. Majava and O. Pironneau (University of Jyväskyä, Department of Mathematical Information Technology, Jyväskylä, Finland, 2004). Google Scholar
    • 194. L. Cheng, R. D. White and K. Grosh, Three-dimensional viscous finite element formulation for acoustic fluid–structure interaction, Computer Methods in Applied Mechanics and Engineering 197 (2008) 4160–4172. CrossrefGoogle Scholar
    • 195. N. Joly, M. Bruneau and R. Bossart, Coupled equations for particle velocity and temperature variation as the fundamental formulation of linear acoustics in thermo-viscous fluid at rest, Acta Acustica United with Acustica 92 (2006) 202–209. Google Scholar
    • 196. W. R. Kampinga, Y. H. Wijnant and A. de Boer, Performance of several viscothermal acoustic finite elements, Acta Acustica United with Acustica 96 (2010) 115–124. CrossrefGoogle Scholar
    • 197. W. R. Kampinga, Y. H. Wijnant and A. de Boer, An efficient finite element model for viscothermal acoustics, Acta Acustica United with Acustica 97 (2011) 618–631. CrossrefGoogle Scholar
    • 198. P. R. Andersen, V. Cutanda Henríquez, N. Aage and S. Marburg, A two-dimensional acoustic tangential derivative boundary element method including viscous and thermal losses, Journal of Theoretical and Computational Acoustics 26 (2018) 1850036. LinkGoogle Scholar
    • 199. V. Cutanda Henríquez and P. M. Juhl, An axisymmetric boundary element formulation of sound wave propagation in fluids including viscous and thermal losses, The Journal of the Acoustical Society of America 134 (2013) 3409–3418. CrossrefGoogle Scholar
    • 200. M. Bruneau, P. Herzog, J. Kergomard and J. D. Polack, General formulation of the dispersion equation in bounded visco-thermal fluid, and application to some simple geometries, Wave Motion 11 (1989) 441–451. CrossrefGoogle Scholar
    • 201. E. Dokumaci, An integral equation formulation for boundary element analysis of acoustic radiation problems in viscous fluids, Journal of Sound and Vibration 147 (1991) 335–348. CrossrefGoogle Scholar
    • 202. E. Dokumaci, Prediction of the effects of entropy fluctuations on sound radiation from vibrating bodies using an integral equation approach, Journal of Sound and Vibration 186 (1995) 805–819. CrossrefGoogle Scholar
    • 203. C. Karra and M. B. Tahar, An integral equation formulation for boundary element analysis of propagation in viscothermal fluids, The Journal of the Acoustical Society of America 102 (1997) 1311–1318. CrossrefGoogle Scholar
    • 204. V. Cutanda Henríquez and P. M. Juhl, Implementation of an acoustic 3D BEM with visco-thermal losses, in Proceedings of the 42nd International Congress on Noise Control Engineering (INTERNOISE), ed. W. Talasch (Austrian Noise Abatement Association, Innsbruck, Austria, 2014), pp. 5576–5583. Google Scholar
    • 205. P. M. Juhl and V. Cutanda Henríquez, Verification of an acoustic 3D BEM with visco-thermal losses, in Proceedings of the 42nd International Congress on Noise Control Engineering (INTERNOISE), ed. W. Talasch (Austrian Noise Abatement Association, Innsbruck, Austria, 2013), pp. 1882–1888. Google Scholar
    • 206. V. Cutanda Henríquez and P. M. Juhl, Implementation aspects of the boundary element method including viscous and thermal losses, in Proceedings of the 43rd International Congress and Exhibition on Noise Control Engineering (INTERNOISE), eds. J. Davy, C. Don, T. McMinn, L. Dowsett, N. Broner and M. Burgess (Melbourne, Australia, 2014), pp. 5576–5583. Google Scholar
    • 207. P. R. Andersen, V. Cutanda Henríquez, L. Godinho, J.-D. Chazot and J. Carbajo San Martín, Characterization of acoustic metasurface absorbers using numerical methods including viscous and thermal losses, in Proceedings of the 48th International Congress and Exhibition on Noise Control Engineering (INTERNOISE), ed. A. Calvo-Manzano, A. Delgado, A. Perez-Lopez and J. S. Santiago (Spanish Acoustical Society, Madrid, Spain, 2019), 5709–5719. Google Scholar
    • 208. M. J. Cops, J. G. McDaniel, E. A. Magliula, D. J. Bamford and M. Berggren, Estimation of acoustic absorption in porous materials based on visco-thermal boundary layers modeled as boundary conditions, The Journal of the Acoustical Society of America 148 (2020) 1624–1635. CrossrefGoogle Scholar
    • 209. S. K. Baydoun and S. Marburg, Investigation of radiation damping in sandwich structures using finite and boundary element methods and a nonlinear eigensolver, The Journal of the Acoustical Society of America 147 (2020) 2020–2034. CrossrefGoogle Scholar
    • 210. S.-I. Ishiyama, M. Imai, S.-I. Maruyama, H. Ido, N. Sugiura and S. Suzuki, The applications of ACOUST/BOOM — A noise level predicting and reducing computer code, Technical report, SAE Technical Paper (SAE International, 1988), 880910. Google Scholar
    • 211. R. A. Adey, S. M. Niku, J. Baynham and P. Burns, Predicting acoustic contributions and sensitivity. Application to vehicle structures, WIT Transactions on The Built Environment 11 (1995) 181–188. Google Scholar
    • 212. S. Marburg, H.-J. Hardtke, R. Schmidt and D. Pawandenat, Application of the concept of acoustic influence coefficients for the optimization of a vehicle roof, Engineering Analysis with Boundary Elements 20 (1997) 305–310. CrossrefGoogle Scholar
    • 213. S. Marburg, Efficient optimization of a noise transfer function by modification of a shell structure geometry-part I: Theory, Structural and Multidisciplinary Optimization 24 (2002) 51–59. CrossrefGoogle Scholar
    • 214. J. P. Coyette, H. Wynendaele and M. K. Chargin, A global acoustic sensitivity tool for improving structural design, Proceedings — SPIE The International Society for Optical Engineering 1923 (1993) 1389–1394. Google Scholar
    • 215. J. Dong, K. K. Choi and N.-H. Kim, Design optimization of structural–acoustic problems using FEA–BEA with adjoint variable method, ASME Journal of Mechanical Design 126 (2004) 527–533. CrossrefGoogle Scholar
    • 216. C. Joachim, D. Nefske and J. Wolf, Application of a structural-acoustic diagnostic technique to reduce boom noise in a passenger vehicle, Technical report, SAE Technical Paper (SAE International, 1981), 810398. Google Scholar
    • 217. Y. Huang and Z. Cui, Recent developments for frequency domain analysis in LS-DYNA®, in Proceedings of the 11th European LS-DYNA Conference (DYNAmore GmbH, Salzburg, Austria, 2017). Google Scholar
    • 218. K. Shaposhnikov and M. J. H. Jensen, Panel contribution analysis based on FEM, BEM and numerical Green’s function approaches, Journal of Theoretical and Computational Acoustics 26 (2018) 1850037. LinkGoogle Scholar
    • 219. E. G. Williams, Fourier Acoustics: Sound Radiation and Nearfield Acoustical Holography (Academic press, 1999). Google Scholar
    • 220. M. R. Bai, Application of BEM–based acoustic holography to radiation analysis of sound sources with arbitrarily shaped geometries, Journal of the Acoustical Society of America 92 (1992) 533–549. CrossrefGoogle Scholar
    • 221. N. P. Valdivia and E. G. Williams, Study of the comparison of the methods of equivalent sources and boundary element methods for near-field acoustic holography, The Journal of the Acoustical Society of America 120 (2006) 3694–3705. CrossrefGoogle Scholar
    • 222. N. Valdivia and E. G. Williams, Implicit methods of solution to integral formulations in boundary element method based nearfield acoustic holography, The Journal of the Acoustical Society of America 116 (2004) 1559–1572. CrossrefGoogle Scholar
    • 223. T. DeLillo, V. Isakov, N. Valdivia and L. Wang, The detection of surface vibrations from interior acoustical pressure, Inverse Problems 19 (2003) 507–524. CrossrefGoogle Scholar
    • 224. N. Valdivia and E. G. Williams, Krylov subspace iterative methods for boundary element method based near-field acoustic holography, The Journal of the Acoustical Society of America 117 (2005) 711–724. CrossrefGoogle Scholar
    • 225. C.-X. Bi, Y. Zhang, X.-Z. Zhang and Y.-B. Zhang, Stability analysis of inverse time domain boundary element method for near-field acoustic holography, The Journal of the Acoustical Society of America 143 (2018) 1308–1317. CrossrefGoogle Scholar
    • 226. H. Wu, D. Li, L. Yu and W. Jiang, A boundary element method based near field acoustic holography in noisy environments, The Journal of the Acoustical Society of America 147 (2020) 3360–3371. CrossrefGoogle Scholar
    • 227. E. G. Williams, B. H. Houston, P. C. Herdic, S. T. Raveendra and B. Gardner, Interior near-field acoustical holography in flight, The Journal of the Acoustical Society of America 108 (2000) 1451–1463. CrossrefGoogle Scholar
    • 228. B.-K. Kim and J.-G. Ih, On the reconstruction of the vibro-acoustic field over the surface enclosing an interior space using the boundary element method, The Journal of the Acoustical Society of America 100 (1996) 3003–3016. CrossrefGoogle Scholar
    • 229. T. Kletschkowski, M. Weber and D. Sachau, Identification of noise sources in an aircraft fuselage using an inverse method based on a finite element model, Acta Acustica united with Acustica 97 (2011) 974–983. CrossrefGoogle Scholar
    • 230. S. F. Wu, On reconstruction of acoustic pressure fields using the Helmholtz equation least squares method, The Journal of the Acoustical Society of America 107 (2000) 2511–2522. CrossrefGoogle Scholar
    • 231. S. F. Wu, The Helmholtz equation least-squares method, in The Helmholtz Equation Least Squares Method (Springer, 2015), pp. 27–62. CrossrefGoogle Scholar
    • 232. Z. Wang and S. F. Wu, Helmholtz equation–least-squares method for reconstructing the acoustic pressure field, The Journal of the Acoustical Society of America 102 (1997) 2020–2032. CrossrefGoogle Scholar
    • 233. X. Zhao and S. F. Wu, Reconstruction of vibroacoustic fields in half-space by using hybrid near-field acoustical holography, The Journal of the Acoustical Society of America 117 (2005) 555–565. CrossrefGoogle Scholar
    • 234. S. F. Wu and L. K. Natarajan, Panel acoustic contribution analysis, The Journal of the Acoustical Society of America 133 (2013) 799–809. CrossrefGoogle Scholar
    • 235. M. B. S. Magalhaes and R. A. Tenenbaum, Sound sources reconstruction techniques: A review of their evolution and new trends, Acta Acustica united with Acustica 90 (2004) 199–220. Google Scholar
    • 236. E. G. Williams, Supersonic acoustic intensity, The Journal of the Acoustical Society of America 97 (1995) 121–127. CrossrefGoogle Scholar
    • 237. E. Fernandez-Grande, F. Jacobsen and Q. Leclere, Direct formulation of the supersonic acoustic intensity in space domain, The Journal of the Acoustical Society of America 131 (2012) 186–193. CrossrefGoogle Scholar
    • 238. S. Marburg, E. Lösche, H. Peters and N. Kessissoglou, Surface contributions to radiated sound power, The Journal of the Acoustical Society of America 133 (2013) 3700–3705. CrossrefGoogle Scholar
    • 239. C. A. Corrêa Junior and R. A. Tenenbaum, Useful intensity: A technique to identify radiating regions on arbitrarily shaped surfaces, Journal of Sound and Vibration 332 (2013) 1567–1584. CrossrefGoogle Scholar
    • 240. E. G. Williams, Convolution formulations for non-negative intensity, The Journal of the Acoustical Society of America 134 (2013) 1055–1066. CrossrefGoogle Scholar
    • 241. D. Liu, H. Peters, S. Marburg and N. Kessissoglou, Surface contributions to scattered sound power using non-negative intensity, The Journal of the Acoustical Society of America 140 (2016) 1206–1217. CrossrefGoogle Scholar
    • 242. D. Liu, Z. Havránek, S. Marburg, H. Peters and N. Kessissoglou, Non-negative intensity and back-calculated non-negative intensity for analysis of directional structure-borne sound, The Journal of the Acoustical Society of America 142 (2017) 117–123. CrossrefGoogle Scholar
    • 243. D. Liu, H. Peters, S. Marburg and N. Kessissoglou, Supersonic intensity and non-negative intensity for prediction of radiated sound, The Journal of the Acoustical Society of America 139 (2016) 2797–2806. CrossrefGoogle Scholar
    • 244. D. R. Wilkes, H. Peters, P. Croaker, S. Marburg, A. J. Duncan and N. Kessissoglou, Non-negative intensity for coupled fluid–structure interaction problems using the fast multipole method, The Journal of the Acoustical Society of America 141 (2017) 4278–4288. CrossrefGoogle Scholar
    • 245. D. Liu, S. Marburg and N. Kessissoglou, Non-negative intensity for target strength identification in marine ecosystem research, Journal of Theoretical and Computational Acoustics 30 (2022) 2150023. LinkGoogle Scholar
    • 246. M. Karimi, L. Maxit, V. Meyer, S. Marburg and R. Kirby, Non-negative intensity for planar structures under stochastic excitation, Journal of Sound and Vibration 488 (2020) 115652. CrossrefGoogle Scholar
    • 247. D. Liu, S. Marburg, C. Geweth and N. Kessissoglou, Non-negative intensity for structures with inhomogeneous damping, Journal of Theoretical and Computational Acoustics 27 (2019) 1850050. LinkGoogle Scholar
    • 248. S. D. Sommerfeldt and P. J. Nashif, An adaptive filtered-x algorithm for energy-based active control, The Journal of the Acoustical Society of America 96 (1994) 300–306. CrossrefGoogle Scholar
    • 249. N. Tanaka and K. Kobayashi, Cluster control of acoustic potential energy in a structural/acoustic cavity, The Journal of the Acoustical Society of America 119 (2006) 2758–2771. CrossrefGoogle Scholar
    • 250. G. H. Koopmann and J. B. Fahnline, Designing quiet structures: A sound power minimization approach (Academic Press, 1997). Google Scholar
    • 251. B. S. Cazzolato and C. H. Hansen, Active control of sound transmission using structural error sensing, The Journal of the Acoustical Society of America 104 (1998) 2878–2889. CrossrefGoogle Scholar
    • 252. B. S. Cazzolato, Sensing systems for active control of sound transmission into cavities, Ph.D. thesis, The University of Adelaide, South Australia, 1999. Google Scholar
    • 253. B. S. Cazzolato and C. H. Hansen, Errors arising from three-dimensional energy density sensing in one-dimensional sound fields, Journal of Sound and Vibration 236 (2000) 375–400. CrossrefGoogle Scholar