World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
INVITED ARTICLES IN NANOENGINEERING FOR MEDICINE AND BIOLOGY (NEMB) 2015No Access

A paper-based microbial fuel cell operating under continuous flow condition

    https://doi.org/10.1142/S2339547816400124Cited by:51 (Source: Crossref)

    Microbial fuel cells have gained popularity as a viable, environmentally friendly alternative for the production of energy. However, the challenges in miniaturizing the system for application in smaller devices as well as the short duration of operation have limited the application of these devices. Here, the capillary motion was employed to design a self-pumped paper-based microbial fuel cell operating under continuous flow condition. A proof-of-concept experiment ran approximately 5 days with no outside power or human interference required for the duration of operation. Shewanella oneidensis MR-1 was used to create a maximum current of 52.25 µA in a 52.5 µL paper-based microfluidic device. SEM images of the anode following the experiment showed biofilm formation on the carbon cloth electrode. The results showed a power density of approximately 25 W/m3 and proved unique capabilities of the paper-based microbial fuel cells to produce energy for an extended period of time.

    References

    • 1. Yang, J., Ghobadian, S., Goodrich, P. J., Montazami, R. & Hashemi, N. Miniaturized biological and electrochemical fuel cells: Challenges and applications. Phys. Chem. Chem. Phys. 15, 14147–14161 (2013). CrossrefGoogle Scholar
    • 2. Winfield, J., Chambers, L.D., Rossiter, J., Greenman, J. & Ieropoulos, I. Urine-activated origami microbial fuel cells to signal proof of life. J. Mater. Chem. A. 3, 7058–7065 (2015). CrossrefGoogle Scholar
    • 3. Esquivel, J.P., Del Campo, F.J., Gomez de la Fuente, J.L., Rojas, S. & Sabate, N. Microfluidic fuel cells on paper: Meeting the power needs of next generation lateral flow devices. Energy Environ. Sci. 7, 1744–1749 (2014). CrossrefGoogle Scholar
    • 4. Li, W., Zhang, S., Chen, G. & Hua, Y. Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite. Appl. Energy 126, 136–141 (2014). CrossrefGoogle Scholar
    • 5. Prater, D.N. & Rusek, J.J. Energy density of a methanol/hydrogen-peroxide fuel cell. Appl. Energy 74, 135–140 (2003). CrossrefGoogle Scholar
    • 6. Achmad, F., Kamarudin, S.K., Daud, W.R.W. & Majlan, E.H. Passive direct methanol fuel cells for portable electronic devices. Appl. Energy 88, 1681–1689 (2011). CrossrefGoogle Scholar
    • 7. Sevda, S., Dominguez-Benetton, X., Vanbroekhoven, K., De Wever, H., Sreekrishnan, T. R. & Pant, D. High strength wastewater treatment accompanied by power generation using air cathode microbial fuel cell. Appl. Energy 105, 194–206 (2013). CrossrefGoogle Scholar
    • 8. Ringeisen, B.R., Henderson, E., Wu, P.K., Pietron, J., Ray, R., Little, B. et al. High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10. Environ. Sci. Technol. 40, 2629–2634 (2006). CrossrefGoogle Scholar
    • 9. Vigolo, D., Al-Housseiny, T.T., Shen, Y., Akinlawon, F.O., Al-Housseiny, S.T. & -Hobson, R.K. et al. Flow dependent performance of microfluidic microbial fuel cells. Phys. Chem. Chem. Phys. 16, 12535–12543 (2014). CrossrefGoogle Scholar
    • 10. Qian, F., He, Z., Thelen, M.P. & Li, Y.A microfluidic microbial fuel cell fabricated by soft lithography. Bioresour. Technol. 102, 5836–5840 (2011). CrossrefGoogle Scholar
    • 11. Taghavi, M., Stinchcombe, A., Greenman, J., Mattoli, V., Beccai, L., Mazzolai, B. et al. Self sufficient wireless transmitter powered by foot-pumped urine operating wearable MFC. Bioinspir. Biomim. 11, 016001 (2016). CrossrefGoogle Scholar
    • 12. Arun, R.K., Halder, S., Chanda, N. & Chakraborty, S. A paper based self-pumping and self-breathing fuel cell using pencil stroked graphite electrodes. Lab Chip 14, 1661–1664 (2014). CrossrefGoogle Scholar
    • 13. Thom, N.K., Yeung, K., Pillion, M.B. & Phillips, S.T. “Fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip 12, 1768–1770 (2012). CrossrefGoogle Scholar
    • 14. Sharifi, F., Cavalcanti, F., Ghobadian, S. & Hashemi, N. Paper-based devices for energy applications. Renew. Sust. Energy Rev. 52, 1453–1472 (2015). CrossrefGoogle Scholar
    • 15. Sechi, D., Greer, B., Johnson, J. & Hashemi, N. Three-dimensional paper-based microfluidic device for assays of protein and glucose in urine. Anal. Chem. 85, 10733–10737 (2013). CrossrefGoogle Scholar
    • 16. Martinez, A.W., Phillips, S.T., Whitesides, G.M. & Carrilho, E. Diagnostics for the developing world: Microfluidic paper-based analytical devices. Anal. Chem. 82, 3–10 (2009). CrossrefGoogle Scholar
    • 17. Mahadeva, S.K., Walus, K. & Stoeber, B. Paper as a platform for sensing applications and other devices: A review. ACS Appl. Mater. Interfaces 7, 8345–8362 (2015). CrossrefGoogle Scholar
    • 18. Reinholt, S.J., Sonnenfeldt, A., Naik, A., Frey, M.W. & Baeumner, A.J. Developing new materials for paper-based diagnostics using electrospun nanofibers. Anal. Bioanal. Chem. 406, 3297–3304 (2014). CrossrefGoogle Scholar
    • 19. Thuo, M.M., Martinez, R.V., Lan, W.-J., Liu, X., Barber, J., Atkinson, M.B.J. et al. Fabrication of low-cost paper-based microfluidic devices by embossing or cut-and-stack methods. Chem. Mater. 26, 4230–4237 (2014). CrossrefGoogle Scholar
    • 20. Fraiwan, A., Mukherjee, S., Sundermier, S., Lee, H.-S. & Choi, S. A paper-based microbial fuel cell: Instant battery for disposable diagnostic devices. Biosens. Bioelectron. 49, 410–414 (2013). CrossrefGoogle Scholar
    • 21. Thormann, K.M., Saville, R.M., Shukla, S., Pelletier, D.A. & Spormann, A.M. Initial phases of biofilm formation in Shewanella oneidensis MR-1. J. Bacteriol. 186, 8096–8104 (2004). CrossrefGoogle Scholar
    • 22. Valiei, A., Kumar, A., Mukherjee, P.P., Liu, Y. & Thundat, T. A web of streamers: Biofilm formation in a porous microfluidic device. Lab Chip 12, 5133–5137 (2012). CrossrefGoogle Scholar
    • 23. Biffinger, J.C., Pietron, J., Ray, R., Little, B. & Ringeisen, B.R. A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSP10 and oxygen reduction cathodes. Biosens. Bioelectron. 22, 1672–1679 (2007). CrossrefGoogle Scholar
    • 24. Choi, S. & Chae, J. Optimal biofilm formation and power generation in a micro-sized microbial fuel cell (MFC). Sens. Actuators A: Phys. 195, 206–212 (2013). CrossrefGoogle Scholar
    • 25. Bennetto, H. Electricity generation by microorganisms. Biotechnol. Educ. 1, 163–168 (1990). Google Scholar
    • 26. Kotloski, N.J. & Gralnick, J.A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. MBio. 4, e00553–12 (2013). CrossrefGoogle Scholar
    • 27. Jiang, X., Hu, J., Fitzgerald, L.A., Biffinger, J.C., Xie, P., Ringeisen, B.R. et al. Probing electron transfer mechanisms in Shewanella oneidensis MR-1 using a nanoelectrode platform and single-cell imaging. Proc. Natl. Acad. Sci. 107, 16806–16810 (2010). CrossrefGoogle Scholar
    • 28. Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnick, J.A. & Bond, D.R. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl. Acad. Sci. USA 105, 3968–3973 (2008). CrossrefGoogle Scholar
    • 29. Von Canstein, H., Ogawa, J., Shimizu, S. & Lloyd, J.R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615–623 (2008). CrossrefGoogle Scholar
    • 30. Wu, C., Cheng, Y.-Y., Li, B.-B., Li, W.-W., Li, D.-B. & Yu, H.-Q. Electron acceptor dependence of electron shuttle secretion and extracellular electron transfer by Shewanella oneidensis MR-1. Bioresour. Technol. 136, 711–714 (2013). CrossrefGoogle Scholar
    • 31. Strycharz-Glaven, S.M., Snider, R.M., Guiseppi-Elie, A. & Tender, L.M. On the electrical conductivity of microbial nanowires and biofilms. Energy Environ. Sci. 4, 4366–4379 (2011). CrossrefGoogle Scholar
    • 32. Logan, B.E. & Regan, J.M. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol. 14, 512–518 (2006). CrossrefGoogle Scholar
    • 33. Biffinger, J.C., Ray, R., Little, B.J., Fitzgerald, L.A., Ribbens, M., Finkel, S.E. et al. Simultaneous analysis of physiological and electrical output changes in an operating microbial fuel cell with Shewanella oneidensis. Biotechnol. Bioeng. 103, 524–531 (2009). CrossrefGoogle Scholar
    • 34. Wagner, L., Yang, J., Ghobadian, S., Montazami, R. & Hashemi, N. A microfluidic reactor for energy applications. Open J. Appl. Biosens. 1, 21–25 (2012). CrossrefGoogle Scholar
    • 35. Liang, Y., Gao, H., Chen, J., Dong, Y., Wu, L. & He, Z. et al. Pellicle formation in Shewanella oneidensis. BMC Microbiol. 10, 291 (2010). CrossrefGoogle Scholar
    • 36. Rosenbaum, M., Cotta, M.A. & Angenent, L.T. Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production. Biotechnol. Bioeng. 105, 880–888 (2010). CrossrefGoogle Scholar
    • 37. Thormann, K.M., Saville, R.M., Shukla, S. & Spormann, A.M. Induction of rapid detachment in Shewanella oneidensis MR-1 biofilms. J. Bacteriol. 187, 1014–1021 (2005). CrossrefGoogle Scholar
    • 38. Wagner, L.T., Hashemi, N. & Hashemi, N. A compact versatile microbial fuel cell from paper. In Proceedings of the ASME 2013 11th Fuel Cell Science, Engineering and Technology Conference, Minneapolis, MN (2013), pp. 1–5. Google Scholar