World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Position Controller for a Flapping-Wing Drone Using UWB by:1 (Source: Crossref)
    This article is part of the issue:

    This paper proposes an integral approach for accurate ultra-wideband indoor position control of flapping-wing micro-air vehicles. Three aspects are considered to achieve a reliable and accurate position controller. The first aspect is a velocity/attitude flapping-wing model for drag compensation. The model is compared with real flight data and shown to be applicable for more than one type of flapping-wing drone. The second improvement regards a voltage-dependent thrust control. Lastly, a characterisation of ground effects in flapping-wing flight is obtained from hovering experiments. The proposed controller improves position control by a factor 1.5, reaching a mean absolute error of 10cm for the position in x and y, and 4.9cm for the position in z.

    This paper was recommended for publication in its revised form by editorial board member, Jose Martinez-Carranza.


    • 1. C. P. Ellington, The aerodynamics of hovering insect flight. IV. Aerodynamic mechanisms, Philos. Trans. R. Soc. Lond. B, Biol. Sci. 305(1122) (1984) 79–113. CrossrefGoogle Scholar
    • 2. M. H. Dickinson, F.-O. Lehmann and S. P. Sane, Wing rotation and the aerodynamic basis of insect flight, Science 284(5422) (1999) 1954–1960. CrossrefGoogle Scholar
    • 3. J. J. Pomárico-Franquiz, M. Granados-Cruz and Y. S. Shmaliy, Self-localization over RFID tag grid excess channels using extended filtering techniques, IEEE J. Sel. Top. Signal Process. 9(2) (2014) 229–238. CrossrefGoogle Scholar
    • 4. A. Alarifi, A. M. Al-Salman, M. Alsaleh, S. Alnafessah, M. A. Al-Ammar and H. S. Al-Khalifa, Ultra wideband indoor positioning technologies: Analysis and recent advances, Sensors 16(5) (2016) 707. CrossrefGoogle Scholar
    • 5. B. Alavi and K. Pahlavan, Modeling of the TOA-based distance measurement error using UWB indoor radio measurements, IEEE Commun. Lett. 10(4) (2006) 275–277. CrossrefGoogle Scholar
    • 6. Z. Li, G. Chang, J. Gao, J. Wang and A. Hernandez, GPS/UWB/MEMS-IMU tightly coupled navigation with improved robust kalman filter, Adv. Space Res. 58(11) (2016) 2424–2434. CrossrefGoogle Scholar
    • 7. Q. Fan, Y. Wu, J. Hui, L. Wu, Z. Yu and L. Zhou, Integrated navigation fusion strategy of INS/UWB for indoor carrier attitude angle and position synchronous tracking, Sci. World J. 2014 (2014) 215303. CrossrefGoogle Scholar
    • 8. L. Hachemi, M. Guiatni and A. Nemra, Fault diagnosis and reconfiguration for mobile robot localization based on multi-sensors data fusion, Unmanned Syst. 10(01) (2022) 69–91. LinkGoogle Scholar
    • 9. K. M. Kajak, M. Karásek, Q. P. Chu and G. C. H. E. De Croon, A minimal longitudinal dynamic model of a tailless flapping wing robot for control design, Bioinspir. Biomim. 14(4) (2019) 046008. CrossrefGoogle Scholar
    • 10. M. R. A. Nabawy and W. J. Crowther, The role of the leading edge vortex in lift augmentation of steadily revolving wings: A change in perspective, J. R. Soc. Interface 14(132) (2017) 20170159. CrossrefGoogle Scholar
    • 11. D. Xue, B. Song, W. Song, W. Yang, W. Xu and T. Wu, Computational simulation and free flight validation of body vibration of flapping-wing mav in forward flight, Aerosp. Sci. Technol. 95 (2019) 105491. CrossrefGoogle Scholar
    • 12. J. L. Verboom, S. Tijmons, C. De Wagter, B. Remes, R. Babuska and G. C. H. E. de Croon, Attitude and altitude estimation and control on board a flapping wing micro air vehicle, in 2015 IEEE Int. Conf. Robotics and Automation (ICRA) (IEEE, 2015), pp. 5846–5851. CrossrefGoogle Scholar
    • 13. Z. E. Teoh, S. B. Fuller, P. Chirarattananon, N. O. Prez-Arancibia, J. D. Greenberg and R. J. Wood, A hovering flapping-wing microrobot with altitude control and passive upright stability, in 2012 IEEE/RSJ Int. Conf. Intelligent Robots and Systems (IEEE, 2012), pp. 3209–3216. CrossrefGoogle Scholar
    • 14. D. A. Olejnik, B. P. Duisterhof, M. Karásek, K. Y. W. Scheper, T. Van Dijk and G. C. H. E. De Croon, A tailless flapping wing mav performing monocular visual servoing tasks, Unmanned Syst. 8(4) (2020) 287–294. LinkGoogle Scholar
    • 15. I. C. Cheeseman and W. E. Bennett, The effect of the ground on a helicopter rotor, R & M No. 3021 (1957). Google Scholar
    • 16. S. Aich, C. Ahuja, T. Gupta and P. Arulmozhivarman, Analysis of ground effect on multi-rotors, in 2014 Int. Conf. Electronics, Communication and Computational Engineering (ICECCE) (IEEE, 2014), pp. 236–241. CrossrefGoogle Scholar
    • 17. Y. Xu, Y. S. Shmaliy, X. Chen, Y. Li and W. Ma, Robust inertial navigation system/ultra wide band integrated indoor quadrotor localization employing adaptive interacting multiple model-unbiased finite impulse response/kalman filter estimator, Aeros. Sci. Technol. 98 (2020) 105683. CrossrefGoogle Scholar
    • 18. S. van der Helm, M. Coppola, K. N. McGuire and G. C. H. E. de Croon, On-board range-based relative localization for micro air vehicles in indoor leader–follower flight, Auton. Robots 44(3) (2020) 415–441. CrossrefGoogle Scholar
    • 19. S. Yuan, H. Wang and L. Xie, Survey on localization systems and algorithms for unmanned systems, Unmanned Syst. 9(02) (2021) 129–163. LinkGoogle Scholar
    • 20. M. Karásek, M. Percin, T. Cunis, B. W. van Oudheusden, C. De Wagter, B. D. W. Remes and G. C. H. E. de Croon, Accurate position control of a flapping-wing robot enabling free-flight flow visualisation in a wind tunnel, Int. J. Micro Air Veh. 11 (2019) 1756829319833683. Google Scholar
    • 21. M. Karasek, Flapper drones,, accessed 1 January 2021. Google Scholar
    • 22. M. W. Mueller, M. Hamer and R. D’Andrea, Fusing ultra-wideband range measurements with accelerometers and rate gyroscopes for quadrocopter state estimation, in 2015 IEEE Int. Conf. Robotics and Automation (ICRA) (IEEE, 2015), pp. 1730–1736. CrossrefGoogle Scholar
    • 23. M. Karásek, F. T. Muijres, C. De Wagter, B. D. W. Remes and G. C. H. E. de Croon, A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns, Science 361(6407) (2018) 1089–1094. CrossrefGoogle Scholar
    • 24. T. A. Shams, S. I. A. Shah, A. Javed and S. H. R. Hamdani, Airfoil selection procedure, wind tunnel experimentation and implementation of 6dof modeling on a flying wing micro aerial vehicle, Micromachines 11(6) (2020) 553. CrossrefGoogle Scholar
    • 25. L. Danjun, Z. Yan, S. Zongying and L. Geng, Autonomous landing of quadrotor based on ground effect modelling, in 2015 34th Chinese Control Conf. (CCC) (IEEE, 2015), pp. 5647–5652. CrossrefGoogle Scholar