World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Mon, Jun 21st, 2021 at 1am (EDT)

During this period, the E-commerce and registration of new users may not be available for up to 6 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

A GPU Spatial Processing System for CHIME

    We present an overview of the Graphics Processing Unit (GPU)-based spatial processing system created for the Canadian Hydrogen Intensity Mapping Experiment (CHIME). The design employs AMD S9300x2 GPUs and readily available commercial hardware in its processing nodes to provide a cost- and power-efficient processing substrate. These nodes are supported by a liquid-cooling system which allows continuous operation with modest power consumption and in all but the most adverse conditions. Capable of continuously correlating 2048 receiver-polarizations across 400MHz of bandwidth, the CHIME X-engine constitutes the most powerful radio correlator currently in existence. It receives 6.6Tb/s of channelized data from CHIME’s FPGA-based F-engine, and the primary correlation task requires 8.39×1014 complex multiply-and-accumulate operations per second. The same system also provides formed-beam data products to commensal FRB and Pulsar experiments; it constitutes a general spatial-processing system of unprecedented scale and capability, with correspondingly great challenges in computation, data transport, heat dissipation, and interference shielding.


    Published: 13 October 2020