World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Half-Metallic Bandgap Measurement Using Circularly Polarized Infrared Light

    https://doi.org/10.1142/S2010324723500078Cited by:0 (Source: Crossref)

    One avenue toward next-generation spintronic devices is to develop half-metallic ferromagnets with 100% spin polarization and Curie temperature above room temperature. Half-metallic ferromagnets have unique density of states, where the majority spins are metallic but the minority spins are semiconducting with the Fermi level lying within an energy gap. To date, the half-metallic bandgap has been predominantly estimated using Jullière’s formula in a magnetic tunnel junction or measured by the Andreev reflection at low temperature, both of which are very sensitive to the surface/interface spin polarization. Alternative optical methods such as photoemission have also been employed but with a complicated and expensive setup. In this study, we developed and optimized a new technique to directly measure the half-metallic bandgap by introducing circularly polarized infrared light to excite minority spins. The absorption of the light represents the bandgap under a magnetic field to saturate the magnetization of a sample. This technique can be used to provide simple evaluation of a half-metallic film.

    References