Abstract
One avenue toward next-generation spintronic devices is to develop half-metallic ferromagnets with 100% spin polarization and Curie temperature above room temperature. Half-metallic ferromagnets have unique density of states, where the majority spins are metallic but the minority spins are semiconducting with the Fermi level lying within an energy gap. To date, the half-metallic bandgap has been predominantly estimated using Jullière’s formula in a magnetic tunnel junction or measured by the Andreev reflection at low temperature, both of which are very sensitive to the surface/interface spin polarization. Alternative optical methods such as photoemission have also been employed but with a complicated and expensive setup. In this study, we developed and optimized a new technique to directly measure the half-metallic bandgap by introducing circularly polarized infrared light to excite minority spins. The absorption of the light represents the bandgap under a magnetic field to saturate the magnetization of a sample. This technique can be used to provide simple evaluation of a half-metallic film.
References
- 1. , J. Magn. Magn. Mater. 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711 Crossref, Google Scholar
- 2. , Nat. Electron. 3, 446 (2020). https://doi.org/10.1038/s41928-020-0461-5 Crossref, Google Scholar
- 3. , Phys. Rev. B 63, 054416 (2001). https://doi.org/10.1103/PhysRevB.63.054416 Crossref, Google Scholar
- 4. , Phys. Rev. B 63, 220403(R) (2001). https://doi.org/10.1103/PhysRevB. 63.220403 Crossref, Google Scholar
- 5. , Nat. Mater. 3, 862 (2004). https://doi.org/10.1038/nmat1256 Crossref, Google Scholar
- 6. , Nat. Mater. 3, 868 (2004). https://doi.org/10.1038/nmat1257 Crossref, Google Scholar
- 7. , Spin 4, 1440021 (2014). https://doi.org/10.1142/S2010 324714400219 Link, Google Scholar
- 8. I. Galanakis and P. H. Dederichs (eds.), Half-Metallic Alloys (Springer, Berlin, Germany, 2005). Crossref, Google Scholar
- 9. , Spin 4, 1440018 (2014). https://doi.org/10.1142/S2010324714400189 Link, Google Scholar
- 10. , Phys. Lett. A 54, 225 (1975). https://doi.org/10.1016/0375-9601(75)90174-7 Crossref, Google Scholar
- 11. , Science 282, 85 (1998). https://doi.org/10.1126/science.282.5386.85 Crossref, Google Scholar
- 12. , Phys. Rep. 238, 173 (1994). https://doi.org/10.1016/0370-1573(94)90 105-8 Crossref, Google Scholar
- 13. , Appl. Phys. Lett. 80, 4181 (2006). https://doi.org/10.1063/1.4869852 Crossref, Google Scholar
- 14. , Nat. Mater. 8, 56 (2009). https://doi.org/10.1038/NMAT2341 Crossref, Google Scholar
- 15. , Phys. Rev. B 63, 104425 (2001). https://doi.org/10.1103/PhysRevB.63. 104425 Crossref, Google Scholar
- 16. , Opt. Mater. 12, 115 (1999). https://doi.org/10.1016/S0925-3467(98)00052-4 Crossref, Google Scholar
- 17. , Sci. Technol. Adv. Mater. 22, 235 (2020). https://doi.org/10.1080/14686996.2020.1812364 Crossref, Google Scholar
- 18. , Curr. Opin. Solid State Mater. Sci. 10, 93 (2006). https://doi.org/10.1016/j.cossms.2006.11.006 Crossref, Google Scholar
- 19. LOT-Oriel, http://www.lot-oriel.com/files/downloads/lightsources/eu/LQ_10_30_W_IR-sources_eu.pdf. Google Scholar
- 20. Horiba, www.horiba.com/fileadmin/uploads/Scientific/Documents/Mono/iHR.pdf. Google Scholar
- 21. II-VI Infrared, http://www.iiviinfrared.com/CO2-Laser-Optics/prisms-rhombs.html. Google Scholar
- 22. T. F. Alhuwaymel, New band-gap measurement technique for a half-metallic ferromagnet, PhD thesis, University of York, UK (2015), https://etheses.whiterose.ac.uk/10668/. Google Scholar
- 23. Edmund Optics, http://www.edmundoptics.com/optics/polarizers/wire-grid-polarizers/infrared-ir-wire-grid-polarizers/62-774. Google Scholar
- 24. Edmund Optics, Data sheet attached with the polariser. Google Scholar
- 25. II-VI Infrared, Data sheet attached with the /4-wave plate. Google Scholar
- 26. ,
Interactions of particles in matter , Experimental Techniques in Nuclear and Particle Physics (Springer, Berlin, Germany, 2010), pp. 23–53. Crossref, Google Scholar - 27. http://spiff.rit.edu/classes/phys440/lectures/optd/optd.html. Google Scholar
- 28. ELTEC Instruments, http://www.eltecinstruments.com/PDF/Ds/Data%20Sheet%20-%20Model%20441.pdf. Google Scholar
- 29. , IEEE Trans. Magn. 50, 2600504 (2014). https://doi.org/10.1109/TMAG.2014.2322912 Crossref, Google Scholar
- 30. , J. Appl. Phys. 117, 17D131 (2015). https://doi.org/10.1063/1.4916817 Crossref, Google Scholar
- 31. , IEEE Trans. Magn. 51, 2600403 (2015). https://doi.org/10.1109/TMAG.2015.2439284 Crossref, Google Scholar
- 32. , Appl. Phys. Lett. 101, 252408 (2012). http://dx.doi.org/10.1063/1.4772546 Crossref, Google Scholar
- 33. , J. Magn. Magn. Mater. 474, 365 (2019). https://doi.org/10.1016/j.jmmm.2018.11.051 Crossref, Google Scholar
- 34. , Phys. Rev. Lett. 96, 137203 (2006). https://doi.org/10.1103/PhysRevLett.96.137203 Crossref, Google Scholar
- 35. , Phys. Rev. Lett. 100, 086402 (2008). http://dx.doi.org/10.1103/PhysRevLett.100.CFMA 086402 Crossref, Google Scholar