World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

DFT Study on the Electronic Structure and the Magnetic Properties of SmFe2 and HoCo2Binary Cubic C15-Laves Phases

    https://doi.org/10.1142/S2010324720500204Cited by:2 (Source: Crossref)

    In this study, we report the electronic structure properties of SmFe2 and HoCo2 binary Laves phase compounds using the density functional theory (DFT) method. We treated the exchange correlation potential with generalized gradient approximation (GGA); in addition, GGA+U (U: Hubbard correction) calculations were applied to describe the correlation effects. At the equilibrium state, the lattice parameter a0 is found in favorable agreement with the available data. We also treated the magnetic properties of SmFe2 and HoCo2, respectively; it is shown that the magnetic moment values of Sm and Ho atoms are larger than those of Fe and Ho elements. We note that the GGA with Hubbard correction (U) provides the best description of our systems. We also illustrated the band structures and total and partial densities of states (DOS) of the rare earth-4f (Sm and Ho) and transition metals-3d (Fe and Co) orbitals. For both approximations used, the SmFe2 and HoCo2 binary compounds have a metallic character at the Fermi level. This investigation shows the importance of the treatment of correlated electrons for a clear and accurate description of these binary compounds of the Laves phases family.

    References

    • 1. J. J. Croat, J. F. Herbst, R. W. Lee and F. E. Pinkerton, J. Appl. Phys. 58, 2078 (1984). CrossrefGoogle Scholar
    • 2. S. Khmelevskyi and P. Mohn, J. Phys.: Condens. Matter 12, 9453 (2000). CrossrefGoogle Scholar
    • 3. E. Gratz and A. S. Markosyan, J. Phys.: Condens. Matter 13, 385 (2001). CrossrefGoogle Scholar
    • 4. C. M. Bonilla, J. Herrero-Albillos, A. I. Figueroa, C. Castán-Guerrero, J. Bartolomé, I. Calvo-Almazán, D. Schmitz, E. Weschke, L. M. García and F. Bartolomé, J. Phys.: Condens. Matter 26, 156001 (2014). CrossrefGoogle Scholar
    • 5. J. Prchal, J. Ebesta, J. Valenta, M. Mí2ek, D. Tur£inková, L. Lap£ák, J. Prokle2ka, M. Kratochvílová and V. Sechovský, in Proc. 15th Czech and Slovak Conference on Magnetism, Ko2ice, Slovakia, June 17–21 (2013). Google Scholar
    • 6. M. C. Grijalva-Castillo, C. R. Santillán-Rodríguez, R. J. Sáenz-Hernández, M. E. Botello-Zubíate and J. A. Matutes-Aquino, Materials 11, 1804 (2018). CrossrefGoogle Scholar
    • 7. Y. Wang, W. J. Ren, Z. H. Wang, Y. Q. Zhang, J. Li and Z. D. Zhang, J. Appl. Phys. 111, 07A901 (2012). CrossrefGoogle Scholar
    • 8. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964). CrossrefGoogle Scholar
    • 9. W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). CrossrefGoogle Scholar
    • 10. P. Blaha, K. Schwarz, G. K. H. Madsen and D. J. Kvasnicka, WIEN2K: An Augmented Plane Wave +Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technische Universität, Wien, Austria, 2001), ISBN 3-9501031 1-2. Google Scholar
    • 11. P. Blaha, K. Schwarz, P. Sorantin and S. B. Tricky, Comput. Phys. Commun. 59, 399 (1990). CrossrefGoogle Scholar
    • 12. K. Schwarz, P. Blaha and G. K. H. Madsen, Comput. Phys. Commun. 147, 71 (2002). CrossrefGoogle Scholar
    • 13. D. C. Langreth and J. P. Perdew, Phys. Rev. B 21, 5469 (1980). CrossrefGoogle Scholar
    • 14. J. P. Perdew, S. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1990). CrossrefGoogle Scholar
    • 15. J. P. Perdew, S. Burke and Y. Wang, Phys. Rev. B 54, 16533 (1996). CrossrefGoogle Scholar
    • 16. J. Hubbard, Proc. R. Soc. (Lond.) 276A, 238 (1963). Google Scholar
    • 17. S. Gupta, K. G. Suresh, A. K. Nigam and A. V. Lukoyanov, J. Alloy Compd. 640, 5671 (2015). CrossrefGoogle Scholar
    • 18. G. K. H. Madsen and P. Novak, Euro. Phys. Lett. 69, 777 (2005). CrossrefGoogle Scholar
    • 19. P. Söderlind, A. Landa, I. L. M. Locht, D. Aberg, Y. Kvashnin, M. Pereiro, M. Däne, P. E. A. Turchi, V. P. Antropov and O. Eriksson, Phys. Rev. B 96, 100404(R) (2017). CrossrefGoogle Scholar
    • 20. V. I. Anisimov, J. Zaane and O. K. Andersen, Phys. Rev. B 44, 943 (1991). CrossrefGoogle Scholar
    • 21. H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188 (1976). CrossrefGoogle Scholar
    • 22. F. D. Murnaghan, Proc. Natl Acad. Sci. USA 30, 244 (1944). CrossrefGoogle Scholar
    • 23. M. C. Grijalva-Castillo, C. R. Santillán-Rodríguez, R. J. Sáenz-Hernández, M. E. Botello-Zubíate and J. A. Matutes-Aquino, Materials 11, 1804 (2018). CrossrefGoogle Scholar
    • 24. H. Samata, N. Fujiwara, Y. Nagata, T. Uchida and M. Der Lan, Jpn J. Appl. Phys. 37, 5544 (1998). CrossrefGoogle Scholar
    • 25. M. Balli, D. Fruchart and D. Gignoux, J. Alloy Compd. 455, 73 (2008). CrossrefGoogle Scholar
    • 26. S. Khmelevskyi and P. Mohn, J. Phys.: Condens. Matter 12, 9453 (2000). CrossrefGoogle Scholar
    • 27. A. Bentouaf, T. Benmedjahed, R. Mebsout and B. Aissa, Solid State Commun. 296, 42 (2019). CrossrefGoogle Scholar
    • 28. A. Bentouaf, R. Mebsout, H. Rached, S. Amari, A. H. Reshak and B. Aissa, J. Alloys Compd. 689, 885 (2016). CrossrefGoogle Scholar