Abstract
In this study, we report the electronic structure properties of SmFe2 and HoCo2 binary Laves phase compounds using the density functional theory (DFT) method. We treated the exchange correlation potential with generalized gradient approximation (GGA); in addition, GGA+U (U: Hubbard correction) calculations were applied to describe the correlation effects. At the equilibrium state, the lattice parameter is found in favorable agreement with the available data. We also treated the magnetic properties of SmFe2 and HoCo2, respectively; it is shown that the magnetic moment values of Sm and Ho atoms are larger than those of Fe and Ho elements. We note that the GGA with Hubbard correction (U) provides the best description of our systems. We also illustrated the band structures and total and partial densities of states (DOS) of the rare earth-4f (Sm and Ho) and transition metals-3d (Fe and Co) orbitals. For both approximations used, the SmFe2 and HoCo2 binary compounds have a metallic character at the Fermi level. This investigation shows the importance of the treatment of correlated electrons for a clear and accurate description of these binary compounds of the Laves phases family.
References
- 1. , J. Appl. Phys. 58, 2078 (1984). Crossref, Google Scholar
- 2. , J. Phys.: Condens. Matter 12, 9453 (2000). Crossref, Google Scholar
- 3. , J. Phys.: Condens. Matter 13, 385 (2001). Crossref, Google Scholar
- 4. , J. Phys.: Condens. Matter 26, 156001 (2014). Crossref, Google Scholar
- 5. , in Proc. 15th Czech and Slovak Conference on Magnetism,
Ko2ice, Slovakia ,June 17–21 (2013). Google Scholar - 6. , Materials 11, 1804 (2018). Crossref, Google Scholar
- 7. , J. Appl. Phys. 111, 07A901 (2012). Crossref, Google Scholar
- 8. , Phys. Rev. B 136, 864 (1964). Crossref, Google Scholar
- 9. , Phys. Rev. 140, A1133 (1965). Crossref, Google Scholar
- 10. P. Blaha, K. Schwarz, G. K. H. Madsen and D. J. Kvasnicka, WIEN2K: An Augmented Plane Wave Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Technische Universität, Wien, Austria, 2001), ISBN 3-9501031 1-2. Google Scholar
- 11. , Comput. Phys. Commun. 59, 399 (1990). Crossref, Google Scholar
- 12. , Comput. Phys. Commun. 147, 71 (2002). Crossref, Google Scholar
- 13. , Phys. Rev. B 21, 5469 (1980). Crossref, Google Scholar
- 14. , Phys. Rev. Lett. 77, 3865 (1990). Crossref, Google Scholar
- 15. , Phys. Rev. B 54, 16533 (1996). Crossref, Google Scholar
- 16. , Proc. R. Soc. (Lond.) 276A, 238 (1963). Google Scholar
- 17. , J. Alloy Compd. 640, 5671 (2015). Crossref, Google Scholar
- 18. , Euro. Phys. Lett. 69, 777 (2005). Crossref, Google Scholar
- 19. , Phys. Rev. B 96, 100404(R) (2017). Crossref, Google Scholar
- 20. , Phys. Rev. B 44, 943 (1991). Crossref, Google Scholar
- 21. , Phys. Rev. B 13, 5188 (1976). Crossref, Google Scholar
- 22. , Proc. Natl Acad. Sci. USA 30, 244 (1944). Crossref, Google Scholar
- 23. , Materials 11, 1804 (2018). Crossref, Google Scholar
- 24. , Jpn J. Appl. Phys. 37, 5544 (1998). Crossref, Google Scholar
- 25. , J. Alloy Compd. 455, 73 (2008). Crossref, Google Scholar
- 26. , J. Phys.: Condens. Matter 12, 9453 (2000). Crossref, Google Scholar
- 27. , Solid State Commun. 296, 42 (2019). Crossref, Google Scholar
- 28. , J. Alloys Compd. 689, 885 (2016). Crossref, Google Scholar