World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

High-accuracy characterization of pyroelectric materials: A noncontact method based on surface potential measurements

    https://doi.org/10.1142/S2010135X23410023Cited by:2 (Source: Crossref)
    This article is part of the issue:

    The characterization of pyroelectric materials is essential for the design of pyroelectric-based devices. Pyroelectric current measurement is the commonly employed method, but can be complex and requires surface electrodes. Here, we present noncontact electrostatic voltmeter measurements as a simple but highly accurate alternative, by assessing thermally-induced pyroelectric surface potential variations. We introduce a refined model that relates the surface potential variations to both the pyroelectric coefficient and the characteristic figure of merit (FOM) and test the model with square-shaped samples made from PVDF, LiNbO3 and LiTaO3. The characteristic pyroelectric coefficient for PVDF, LiNbO3 and LiTaO3 was found to be 33.4, 59.9 and 208.4 μC m2 K1, respectively. These values are in perfect agreement with literature values, and they differ by less than 2.5% from values that we have obtained with standard pyroelectric current measurements for comparison.

    References

    • 1. S. B. Lang , Pyroelectricity: From ancient curiosity to modern imaging tool, Phys. Today 58, 31 (2005). CrossrefGoogle Scholar
    • 2. A. J. Holden , Pyroelectric sensor arrays for detection and thermal imaging, Proc. SPIE: Infrared Technol. Appl. XXXIX, 8704, 483 (2013). Google Scholar
    • 3. A. Rogalski , Infrared detectors: An overview, Infrared Phys. Technol. 43, 187 (2002). CrossrefGoogle Scholar
    • 4. M. H. Lee, R. Guo and A. S. Bhalla , Pyroelectric sensors, J. Electroceram. 2, 229 (1998). CrossrefGoogle Scholar
    • 5. H. P. Beerman , Investigation of pyroelectric material characteristics for improved infrared detector performance, Infrared Phys. 15, 225 (1975). CrossrefGoogle Scholar
    • 6. S. P. Alpay, J. Mantese, S. Trolier-McKinstry, Q. Zhang and R. W. Whatmore , Next-generation electrocaloric and pyroelectric materials for solid-state electrothermal energy interconversion, MRS Bull. 39, 1099 (2014). CrossrefGoogle Scholar
    • 7. C. R. Bowen, J. Taylor, E. LeBoulbar, D. Zabek, A. Chauhan and R. Vaish , Pyroelectric materials and devices for energy harvesting applications, Energy Environ. Sci. 7, 3836 (2014). CrossrefGoogle Scholar
    • 8. J. D. Brownridge , Pyroelectric x-ray generator, Nature 358, 287 (1992). CrossrefGoogle Scholar
    • 9. S. Imashuku , Technology of pyroelectric x-ray tubes, Handbook of X- ray Imaging, Physics and Technology, ed. P. Russo (CRC Press, Boca Raton, 2018), pp. 131-138. Google Scholar
    • 10. G. Rosenman, D. Shur, Y. E. Krasik and A. Dunaevsky , Electron emission from ferroelectrics, J. Appl. Phys. 88, 6109 (2000). CrossrefGoogle Scholar
    • 11. B. Naranjo, J. Gimzewski and S. Putterman , Observation of nuclear fusion driven by a pyroelectric crystal, Nature 434, 1115 (2005). CrossrefGoogle Scholar
    • 12. Y. Danon , Pyroelectric crystal d-d and d-t neutron generators, J. Instrum. 7, C04002 (2012). CrossrefGoogle Scholar
    • 13. W. Tornow , Production of 14 MeV neutrons using pyroelectric crystals: Reconverting solar energy into nuclear fusion energy, Int. J. Energy Sci. 4, 101 (2014). CrossrefGoogle Scholar
    • 14. P. Ferraro, S. Coppola, S. Grilli, M. Paturzo and V. Vespini , Dispensing nano–pico droplets and liquid patterning by pyroelectrodynamic shooting, Nat. Nanotechnol. 5, 429 (2010). CrossrefGoogle Scholar
    • 15. S. Grilli, L. Miccio, O. Gennari, S. Coppola, V. Vespini, L. Battista, P. Orlando and P. Ferraro , Active accumulation of very diluted biomolecules by nano-dispensing for easy detection below the femtomolar range, Nat. Commun. 5314 (2014). https://doi.org/10.1038/ncomms6314 Google Scholar
    • 16. D. Zhang, H. Wu, C. R. Bowen and Y. Yang , Recent advances in pyro- electric materials and applications, Small 17, 2103960 (2021). CrossrefGoogle Scholar
    • 17. G. Velarde, S. Pandya, J. Karthik, D. Pesquera and L. W. Martin , Pyroelectric thin films—past, present, and future, APL Mater. 9, 010702 (2021). CrossrefGoogle Scholar
    • 18. S. Jachalke, E. Mehner, H. Stöcker, J. Hanzig, M. Sonntag, T. Weigel, T. Leisegang and D. C. Meyer , How to measure the pyroelectric coefficient? Appl. Phys. Rev. 4, 021303 (2017). CrossrefGoogle Scholar
    • 19. L. B. Schein, P. J. Cressman and F. M. Tesche , Electrostatic observations of laser-induced optical damage in LiNbO3, J. Appl. Phys. 48, 4844 (1977). CrossrefGoogle Scholar
    • 20. L. B. Schein, P. J. Cressman and L. E. Cross , Electrostatic measurements of unusually large secondary pyroelectricity in partially clamped LiNbO3, Ferroelectrics 22, 937 (1978). CrossrefGoogle Scholar
    • 21. L. B. Schein, P. J. Cressman and L. E. Cross , Electrostatic measurements of tertiary pyroelectricity in partially clamped LiNbO3, Ferroelectrics 22, 945 (1978). CrossrefGoogle Scholar
    • 22. D. Halliday, R. Resnick and J. Walker , Fundamentals of Physics Extended, 10th edn. (John Wiley & Sons, Inc., 2014), p. 789. Google Scholar
    • 23. T. Moore , Six Ideas That Shaped Physics: Unit E - Electromagnetic Fields (McGraw-Hill, 2016), p. 59. Google Scholar
    • 24. T. Bartholomäus, K. Buse, C. Deuper and E. Krätzig , Pyroelectric coefficients of LiNbO3 crystals of different compositions, Phys. Status Solidi A 142, K55 (1994). CrossrefGoogle Scholar
    • 25. S. T. Popescu, A. Petris and V. I. Vlad , Interferometric measurement of the pyroelectric coefficient in lithium niobate, J. Appl. Phys. 113, 043101 (2013). CrossrefGoogle Scholar
    • 26. J. G. Bergman, J. H. McFee and G. R. Crane , Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride films, Appl. Phys. Lett. 18, 203 (1971). CrossrefGoogle Scholar
    • 27. G. Sebald, D. Guyomar and A. Agbossou , On thermoelectric and pyroelectric energy harvesting, Smart Mater. Struct. 18, 125006 (2009). CrossrefGoogle Scholar
    • 28. A. M. Glass , Dielectric, thermal, and pyroelectric properties ferroelectric LiTaO3, Phys. Rev. 172, 564 (1968). CrossrefGoogle Scholar