Exploring electronic, optical, and phononic properties of MgX (X = C, N, and O) monolayers using first principle calculations
Abstract
The electronic, the thermal, and the optical properties of hexagonal MgX monolayers (where = , , and ) are investigated via first principles studies. Ab-initio molecular dynamic, AIMD, simulations using NVT ensembles are performed to check the thermodynamic stability of the monolayers. We find that an MgO monolayer has semiconductor properties with a good thermodynamic stability, while the MgC and the MgN monolayers have metallic characters. The calculated phonon band structures of all the three considered monolayers show no imaginary nonphysical frequencies, thus indicating that they all have excellent dynamic stability. The MgO monolayer has a larger heat capacity then the MgC and the MgN monolayers. The metallic monolayers demonstrate optical response in the IR as a consequence of the metal properties, whereas the semiconducting MgO monolayer demonstrates an active optical response in the near-UV region. The optical response in the near-UV is beneficial for nanoelectronics and photoelectric applications. A semiconducting monolayer is a great choice for thermal management applications since its thermal properties are more attractive than those of the metallic monolayer in terms of heat capacity, which is related to the change in the internal energy of the system.
References
- 1. , Science 306, 666 (2004). Crossref, Web of Science, Google Scholar
- 2. , Proc. Natl. Acad. Sci. 102, 10451 (2005). Crossref, Web of Science, Google Scholar
- 3. , Prog. Mater. Sci. 73, 44 (2015). Crossref, Web of Science, Google Scholar
- 4. , Phys. Rev. B 95, 144109 (2017). Crossref, Web of Science, Google Scholar
- 5. , Extreme Mech. Lett. 13, 42 (2017). Crossref, Web of Science, Google Scholar
- 6. , Adv. Sci. 6, 1801501 (2019). Crossref, Web of Science, Google Scholar
- 7. , Mater. Sci. Semicond. Process. 135, 106073 (2021). Crossref, Web of Science, Google Scholar
- 8. , Mater. Sci. Semicond. Process. 153, 107163 (2023). Crossref, Web of Science, Google Scholar
- 9. , Nat. Photon. 10, 216 (2016). Crossref, Web of Science, Google Scholar
- 10. , ACS Nano 7, 4414 (2013). Crossref, Web of Science, Google Scholar
- 11. , Nano Lett. 13, 4351 (2013). Crossref, Web of Science, Google Scholar
- 12. , Phys. Rev. Lett. 108, 155501 (2012). Crossref, Web of Science, Google Scholar
- 13. , Nat. Nanotechnol. 13, 444 (2018). Crossref, Web of Science, Google Scholar
- 14. , Nat. Mater. 14, 1020 (2015). Crossref, Web of Science, Google Scholar
- 15. , Phys. Rev. B 82, 033408 (2010). Crossref, Web of Science, Google Scholar
- 16. , Phys. Chem. Chem. Phys. 13, 2582 (2011). Crossref, Web of Science, Google Scholar
- 17. , ECS J. Solid State Sci. Technol. 5, Q3038 (2016). Crossref, Web of Science, Google Scholar
- 18. , Cryst. Growth Des. 21, 4674 (2021). Crossref, Web of Science, Google Scholar
- 19. , Eur. J. Inorg. Chem. 2012, 2869 (2012). Crossref, Web of Science, Google Scholar
- 20. , Appl. Catalysis A: Gen. 618, 118132 (2021). Crossref, Web of Science, Google Scholar
- 21. , Angew. Chem. Int. Ed. 60, 3254 (2021). Crossref, Web of Science, Google Scholar
- 22. , Angew. Chem. Int. Ed. 56, 8766 (2017). Crossref, Web of Science, Google Scholar
- 23. , Appl. Catal. A: Gen. 475, 76 (2014). Crossref, Web of Science, Google Scholar
- 24. , Phys. Rev. B 92, 115307 (2015). Crossref, Web of Science, Google Scholar
- 25. , Proc. Natl. Acad. Sci. 116, 17213 (2019). Crossref, Web of Science, Google Scholar
- 26. , Mater. Today Nano 15, 100125 (2021). Crossref, Google Scholar
- 27. , J. Phys. Chem. C 122, 8102–8108 (2018). Crossref, Web of Science, Google Scholar
- 28. , J. Phys. Chem. C 111, 12038 (2007). Crossref, Web of Science, Google Scholar
- 29. , Nat. Catal. 4, 968 (2021). Crossref, Web of Science, Google Scholar
- 30. , Angew. Chem. Int. Ed. 45, 7277 (2006). Crossref, Web of Science, Google Scholar
- 31. , J. Fuel Chem. Technol. 43, 315 (2015). Crossref, Google Scholar
- 32. , Adv. Mater. 32, 2003920 (2020). Crossref, Web of Science, Google Scholar
- 33. , J. Phys. Chem. Lett. 6, 3104 (2015). Crossref, Web of Science, Google Scholar
- 34. , Topics Catal. 57, 619 (2014). Crossref, Web of Science, Google Scholar
- 35. , Phys. Chem. Chem. Phys. 19, 32086 (2017). Crossref, Web of Science, Google Scholar
- 36. , J. Phys. Chem. C 116, 23130 (2012). Crossref, Web of Science, Google Scholar
- 37. , Results Phys. 12, 2038 (2019). Crossref, Web of Science, Google Scholar
- 38. , J. Electron. Mater. 48, 3816 (2019). Crossref, Web of Science, Google Scholar
- 39. , Micro Nanostruct. 163, 107134 (2022). Crossref, Google Scholar
- 40. , Optik 186, 395 (2019). Crossref, Web of Science, Google Scholar
- 41. , Comput. Mater. Sci. 86, 180 (2014). Crossref, Web of Science, Google Scholar
- 42. , Physica E: Low-Dimens. Syst. Nanostruct. 81, 7 (2016). Crossref, Web of Science, Google Scholar
- 43. , Physica C: Supercond. Appl. 549, 33 (2018). Crossref, Web of Science, Google Scholar
- 44. , Mater. Sci. Semicond. Process. 149, 106876 (2022). Crossref, Web of Science, Google Scholar
- 45. , Phys. Lett. A 384, 126578 (2020). Crossref, Web of Science, Google Scholar
- 46. , Mater. Sci. Semicond. Process. 149, 106876 (2022), https://doi.org/10.1016/j.mssp.2022.106876, https://www.sciencedirect.com/science/article/pii/S1369800122004139. Crossref, Web of Science, Google Scholar
- 47. , Optimized sensitivity analysis of phase modulated optical fiber sensor, 2019 18th Int. Conf. Optical Communications and Networks (ICOCN) (IEEE, 2019), pp. 1–3. https://doi.org/10.1109/ICOCN.2019.8933899. Crossref, Google Scholar
- 48. , J. Light. Technol. 36, 1145 (2018), https://doi.org/10.1109/JLT.2017.2756097. Crossref, Web of Science, Google Scholar
- 49. , Mater. Sci. Semicond. Process. 141, 106409 (2022), https://doi.org/10.1016/j.mssp.2021.106409, https://www.sciencedirect.com/science/article/pii/S136980012100740X. Crossref, Web of Science, Google Scholar
- 50. , J. Phys.: Condens. Matter 21, 395502 (2009), https://doi.org/10.1088/0953-8984/21/39/395502. Crossref, Web of Science, Google Scholar
- 51. , J. Phys.: Condens. Matter 29, 465901 (2017). Crossref, Web of Science, Google Scholar
- 52. , Mater. Sci. Eng.: B 276, 115554 (2022), https://doi.org/10.1016/j.mseb.2021.115554, https://www.sciencedirect.com/science/article/pii/S0921510721005080. Crossref, Web of Science, Google Scholar
- 53. , Solid State Commun. 342, 114590 (2022), https://doi.org/10.1016/j.ssc.2021.114590, https://www.sciencedirect.com/science/article/pii/S0038109821003732. Crossref, Web of Science, Google Scholar
- 54. , Phys. Rev. B 92, 115307 (2015), https://doi.org/10.1103/PhysRevB.92.115307. Crossref, Web of Science, Google Scholar
- 55. , Int. J. Thermophys. 22, 265–275 (2001). Crossref, Web of Science, Google Scholar
- 56. , Phys. Chem. Chem. Phys. 23, 12471 (2021), https://doi.org/10.1039/D1CP01183A. Crossref, Web of Science, Google Scholar
- 57. , Flat. Chem. 28, 100257 (2021), https://doi.org/10.1016/j.flatc.2021.100257, https://www.sciencedirect.com/science/article/pii/S2452262721000362. Crossref, Web of Science, Google Scholar
- 58. , Solid State Sci. 125, 106835 (2022), https://doi.org/10.1016/j.solidstatesciences.2022.106835, https://www.sciencedirect.com/science/article/pii/S1293255822000309. Crossref, Web of Science, Google Scholar
- 59. , Solid State Commun. 346, 114705 (2022). Crossref, Web of Science, Google Scholar
- 60. , Mater. Sci. Eng.: B 288, 116147 (2023), https://doi.org/10.1016/j.mseb.2022.116147, https://www.sciencedirect.com/science/article/pii/S0921510722005359. Crossref, Web of Science, Google Scholar