World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Lacunary statistical convergence of rough triple sequence via ideals

    https://doi.org/10.1142/S1793557123501322Cited by:0 (Source: Crossref)

    In this paper, we have introduced the notion of the lacunary -statistical convergence of triple sequences for rough variables. In addition, we have defined lacunary -statistical Cauchy sequence of rough variables in trust space and given the lacunary -statistical completeness for trust space. Some important results have also been examined.

    Communicated by I. Inam

    AMSC: 40A35, 03E72

    References

    • 1. F. Başar , Summability Theory and Its Applications, 2nd edn. (CRC Press/Taylor & Francis Group, New York, 2022). CrossrefGoogle Scholar
    • 2. P. Das, E. Savaş and S. K. Ghosal , On generalizations of certain summability methods using ideals, Appl. Math. Lett. 24(9) (2011) 1509–1514. Crossref, Web of ScienceGoogle Scholar
    • 3. I. A. Demirci and M. Gürdal , On lacunary generalized statistical convergent complex uncertain triple sequence, J. Intell. Fuzzy Syst. 41(1) (2021) 1021–1029. Crossref, Web of ScienceGoogle Scholar
    • 4. A. Esi and E. Savaş , On lacunary statistically convergent triple sequences in probabilistic normed space, Appl. Math. Inf. Sci. 9(5) (2015) 2529–2534. Google Scholar
    • 5. H. Fast , Sur la convergence statistique, Colloq. Math. 2 (1951) 241–244. CrossrefGoogle Scholar
    • 6. J. A. Fridy and C. Orhan , Lacunary statistical convergence, Pacific J. Math. 160 (1993) 43–51. Crossref, Web of ScienceGoogle Scholar
    • 7. M. Gürdal, Some types of convergence, Doctoral dissertation, Suleyman Demirel University, Isparta (2004). Google Scholar
    • 8. M. Gürdal and M. B. Huban , On -convergence of double sequences in the topology induced by random 2-norms, Mat. Vesnik 66(1) (2014) 73–83. Google Scholar
    • 9. M. Gürdal and A. Şahiner , Extremal -limit points of double sequences, Appl. Math. E-Notes 8 (2008) 131–137. Google Scholar
    • 10. M. B. Huban and M. Gürdal , Wijsman lacunary invariant statistical convergence for triple sequences via Orlicz function, J. Class. Anal. 17(2) (2021) 119–128. CrossrefGoogle Scholar
    • 11. M. B. Huban, M. Gürdal and H. Baytürk , On asymptotically lacunary statistical equivalent triple sequences via ideals and Orlicz function, Honam Math. J. 43(2) (2021) 343–357. Google Scholar
    • 12. U. Kadak and S. A. Mohiuddine , Generalized statistically almost convergence based on the difference operator which includes the (p,q)-gamma function and related approximation theorems, Results Math. 73 (2018) 9. Crossref, Web of ScienceGoogle Scholar
    • 13. Ö. Kişi , Lacunary σ-statistical convergence of complex uncertain sequence, Sigma J. Eng. Nat. Sci. 37(2) (2019) 507–520. Google Scholar
    • 14. Ö. Kişi , Lacunary ideal convergence in measure for sequences of fuzzy valued functions, J. Intell. Fuzzy Syst. 40(3) (2021) 5517–5526. Crossref, Web of ScienceGoogle Scholar
    • 15. Ö. Kişi, M. Gürdal and E. Savaş , On ideal convergence of rough triple sequence, e-J. Anal. Appl. Math. 2022(1) (2022) 33–44. Google Scholar
    • 16. P. Kostyrko, T. S̆alát and W. Wilczyński , -convergence, Real Anal. Exchange 26(2) (2000) 669–686. CrossrefGoogle Scholar
    • 17. B. Liu , Theory and Practice of Uncertain Programming (Physica-Verlag, Heidelberg, 2002). CrossrefGoogle Scholar
    • 18. B. Liu , Inequalities and convergence concepts of fuzzy and rough variables, Fuzzy Optim. Decis. Mak. 2(2) (2003) 87–100. CrossrefGoogle Scholar
    • 19. S. A. Mohiuddine and B. A. S. Alamri , Generalization of equi-statistical convergence via weighted lacunary sequence with associated Korovkin and Voronovskaya type approximation theorems, RACSAM Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. 113(3) (2019) 1955–1973. Crossref, Web of ScienceGoogle Scholar
    • 20. S. A. Mohiuddine, A. Asiri and B. Hazarika , Weighted statistical convergence through difference operator of sequences of fuzzy numbers with application to fuzzy approximation theorems, Int. J. Gen. Syst. 48(5) (2019) 492–506. Crossref, Web of ScienceGoogle Scholar
    • 21. S. A. Mohiuddine, B. Hazarika and M. A. Alghamdi , Ideal relatively uniform convergence with Korovkin and Voronovskaya types approximation theorems, Filomat 33(14) (2019) 4549–4560. Crossref, Web of ScienceGoogle Scholar
    • 22. S. A. Mohiuddine, B. Hazarika and A. Alotaibi , On statistical convergence of double sequences of fuzzy valued functions, J. Intell. Fuzzy Syst. 32 (2017) 4331–4342. Crossref, Web of ScienceGoogle Scholar
    • 23. M. Mursaleen and F. Başar , Sequence Spaces: Topics in Modern Summability Theory, Mathematics and Its Applications (CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2020). CrossrefGoogle Scholar
    • 24. M. Mursaleen and O. H. H. Edely , Statistical convergence of double sequences, J. Math. Anal. Appl. 288 (2003) 223–231. Crossref, Web of ScienceGoogle Scholar
    • 25. M. Mursaleen, S. A. Mohiuddine and H. H. Osama Edely , On the ideal convergence of double sequences in intuitionistic fuzzy normed spaces, Comput. Math. Appl. 59(2) (2010) 603–611. Crossref, Web of ScienceGoogle Scholar
    • 26. A. Nabiev, S. Pehlivan and M. Gürdal , On -Cauchy sequences, Taiwanese J. Math. 11(2) (2007) 569–576. Crossref, Web of ScienceGoogle Scholar
    • 27. Z. Pawlak , Rough sets, Internat. J. Comput. Inform. Sci. 11 (1982) 341–356. Crossref, Web of ScienceGoogle Scholar
    • 28. A. Şahiner, M. Gürdal and F. K. Düden , Triple sequences and their statistical convergence, Selçuk J. Appl. Math. 8(2) (2007) 49–55. Google Scholar
    • 29. A. Şahiner, M. Gürdal and T. Yiğit , Ideal convergence characterization of the completion of linear n-normed spaces, Comput. Math. Appl. 61(3) (2011) 683–689. Crossref, Web of ScienceGoogle Scholar
    • 30. A. Şahiner and B. C. Tripathy , Some -related properties of triple sequences, Selçuk J. Appl. Math. 9(2) (2008) 9–18. Google Scholar
    • 31. E. Savaş and M. Gürdal , Generalized statistically convergent sequences of functions in fuzzy 2-normed spaces, J. Intell. Fuzzy Syst. 27(4) (2014) 2067–2075. Crossref, Web of ScienceGoogle Scholar
    • 32. E. Savaş and M. Gürdal , Ideal convergent function sequences in random 2-normed spaces, Filomat 30(3) (2016) 557–567. Crossref, Web of ScienceGoogle Scholar
    • 33. R. Slowinski and D. Vanderpooten , A generalized definition of rough approximations based on similarity, IEEE Trans. Knowl. Data Eng. 12(2) (2000) 331–336. Crossref, Web of ScienceGoogle Scholar
    • 34. C. J. Tian, S. S. Cheng and M. Gürdal , Necessary and sufficient conditions for frequent cauchy sequences, Asian-Eur. J. Math. 2(2) (2009) 295–305. LinkGoogle Scholar
    • 35. C. You and R. Zhang , On the convergence of fuzzy variables, J. Intell. Fuzzy Syst. 36(2) (2018) 1–8. Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Mathematics books for inspirations & up-to-date information in your research area today!