World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
https://doi.org/10.1142/S1793525321500229Cited by:0 (Source: Crossref)

An n-dimensional knot SnSn+2 is called doubly slice if it occurs as the cross section of some unknotted (n+1)-dimensional knot. For every n it is unknown which knots are doubly slice, and this remains one of the biggest unsolved problems in high-dimensional knot theory. For >1, we use signatures coming from L(2)-cohomology to develop new obstructions for (43)-dimensional knots with metabelian knot groups to be doubly slice. For each >1, we construct an infinite family of knots on which our obstructions are nonzero, but for which double sliceness is not obstructed by any previously known invariant.

AMSC: 57K45

References

  • 1. W. Browder, Diffeomorphisms of 1-connected manifolds, Trans. Amer. Math. Soc. 128 (1967) 155–163. CrossrefGoogle Scholar
  • 2. S. E. Cappell and J. L. Shaneson, The codimension two placement problem and homology equivalent manifolds, Ann. of Math. (2) 99 (1974) 277–348. CrossrefGoogle Scholar
  • 3. A. Casson and C. McA. Gordon, Cobordism of classical knots, in À la Recherche de la Topologie Perdue (Birkhäuser Boston, 1986), pp. 181–199. With an appendix by P. M. Gilmer. Google Scholar
  • 4. J. C. Cha, Amenable L2-theoretic methods and knot concordance, Int. Math. Res. Not. IMRN 17 (2014) 4768–4803. CrossrefGoogle Scholar
  • 5. J. C. Cha, A topological approach to Cheeger–Gromov universal bounds for von Neumann ρ-invariants, Comm. Pure Appl. Math. 69 (2016) 1154–1209. CrossrefGoogle Scholar
  • 6. J. C. Cha and K. E. Orr, L2-signatures, homology localization, and amenable groups, Comm. Pure Appl. Math. 65 (2012) 790–832. CrossrefGoogle Scholar
  • 7. S. Chang and S. Weinberger, On invariants of Hirzebruch and Cheeger–Gromov, Geom. Topol. 7 (2003) 311–319. CrossrefGoogle Scholar
  • 8. T. D. Cochran, S. Harvey and C. Leidy, Knot concordance and higher-order Blanchfield duality, Geom. Topol. 13 (2009) 1419–1482. CrossrefGoogle Scholar
  • 9. T. D. Cochran, S. Harvey and C. Leidy, Primary decomposition and the fractal nature of knot concordance, Math. Ann. 351 (2011) 443–508. CrossrefGoogle Scholar
  • 10. T. D. Cochran and T. Kim, Higher-order Alexander invariants and filtrations of the knot concordance group, Trans. Amer. Math. Soc. 360 (2008) 1407–1441 (electronic). CrossrefGoogle Scholar
  • 11. T. D. Cochran, K. E. Orr and P. Teichner, Knot concordance, Whitney towers and L2-signatures, Ann. of Math. (2) 157 (2003) 433–519. CrossrefGoogle Scholar
  • 12. R. H. Fox, Free differential calculus. III. Subgroups, Ann. of Math. (2) 64 (1956) 407–419. CrossrefGoogle Scholar
  • 13. B. D. Franklin, The effect of infecting curves on knot concordance, Int. Math. Res. Not. IMRN 1 (2013) 184–217. CrossrefGoogle Scholar
  • 14. M. Freedman and F. Quinn, Topology of 4-Manifolds, Princeton Mathematical Series, Vol. 39 (Princeton Univ. Press, 1990). Google Scholar
  • 15. H. Gluck, The embedding of two-spheres in the four-sphere, Trans. Amer. Math. Soc. 104 (1962) 308–333. CrossrefGoogle Scholar
  • 16. C. McA. Gordon, Knots whose branched cyclic coverings have periodic homology, Trans. Amer. Math. Soc. 168 (1972) 357–370. CrossrefGoogle Scholar
  • 17. C. McA. Gordon, Some aspects of classical knot theory, in Knot Theory, Lecture Notes in Mathematics, Vol. 685 (Springer, 1978), pp. 1–60. CrossrefGoogle Scholar
  • 18. J.-C. Hausmann, On the homotopy of nonnilpotent spaces, Math. Z. 178 (1981) 115–123. CrossrefGoogle Scholar
  • 19. M. Kato, A concordance classification of PL homeomorphisms of Sp × Sq, Topology 8 (1969) 371–383. CrossrefGoogle Scholar
  • 20. M. A. Kervaire, Les nœuds de dimensions supérieures, Bull. Soc. Math. France 93 (1965) 225–271. CrossrefGoogle Scholar
  • 21. T. Kim, An infinite family of non-concordant knots having the same Seifert form, Comment. Math. Helv. 80 (2005) 147–155. CrossrefGoogle Scholar
  • 22. T. Kim, New obstructions to doubly slicing knots, Topology 45 (2006) 543–566. CrossrefGoogle Scholar
  • 23. R. C. Kirby and L. C. Siebenmann, Normal bundles for codimension 2 locally flat imbeddings, Lecture Notes in Mathematics 438 (1975) 310–324. CrossrefGoogle Scholar
  • 24. R. C. Kirby and L. C. Siebenmann, Foundational Essays on Topological Manifolds, Smoothings, and Triangulations (Princeton Univ. Press; University of Tokyo Press, 1977). With notes by John Milnor and Michael Atiyah, Annals of Mathematics Studies, No. 88. CrossrefGoogle Scholar
  • 25. J. P. Levine, Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229–244. CrossrefGoogle Scholar
  • 26. J. P. Levine, Knot modules, Trans. Amer. Math. Soc. 229 (1977) 1–50. CrossrefGoogle Scholar
  • 27. J. P. Levine, Doubly sliced knots and doubled disk knots, Michigan Math. J. 30 (1983) 249–256. CrossrefGoogle Scholar
  • 28. C. Livingston, Seifert forms and concordance, Geom. Topol. 6 (2002) 403–408 (electronic). CrossrefGoogle Scholar
  • 29. W. Lück, L2-Invariants: Theory and Applications to Geometry and K-Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], Vol. 44 (Springer-Verlag, 2002). CrossrefGoogle Scholar
  • 30. A. Marin, La transversalité topologique, Ann. of Math. (2) 106 (1977) 269–293. CrossrefGoogle Scholar
  • 31. P. Orson, Double L-groups and doubly slice knots, Algebr. Geom. Topol. 17 (2017) 273–329. CrossrefGoogle Scholar
  • 32. A. L. T. Paterson, Amenability, Mathematical Surveys and Monographs, Vol. 29 (Amer. Math. Soc., 1988). CrossrefGoogle Scholar
  • 33. A. A. Ranicki, The algebraic theory of surgery. I. Foundations, Proc. London Math. Soc. (3) 40 (1980) 87–192. CrossrefGoogle Scholar
  • 34. A. A. Ranicki, The algebraic theory of surgery. II. Applications to topology, Proc. London Math. Soc. (3) 40 (1980) 193–283. CrossrefGoogle Scholar
  • 35. A. A. Ranicki, Exact Sequences in the Algebraic Theory of Surgery, Mathematical Notes, Vol. 26 (Princeton Univ. Press, 1981). Google Scholar
  • 36. A. A. Ranicki, A. J. Casson, D. P. Sullivan, M. A. Armstrong, C. P. Rourke and G. E. Cooke, The Hauptvermutung Book, K-Monographs in Mathematics, Vol. 1 (Kluwer Academic Publishers, 1996). A collection of papers of the topology of manifolds. Google Scholar
  • 37. D. Ruberman, Doubly slice knots and the Casson–Gordon invariants, Trans. Amer. Math. Soc. 279 (1983) 569–588. CrossrefGoogle Scholar
  • 38. D. Ruberman, The Casson–Gordon invariants in high-dimensional knot theory, Trans. Amer. Math. Soc. 306 (1988) 579–595. CrossrefGoogle Scholar
  • 39. R. Strebel, Homological methods applied to the derived series of groups, Comment. Math. Helv. 49 (1974) 302–332. Google Scholar
  • 40. D. W. Sumners, Invertible knot cobordisms, Comment. Math. Helv. 46 (1971) 240–256. CrossrefGoogle Scholar