World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
https://doi.org/10.1142/S1793042125500393Cited by:0 (Source: Crossref)

In this paper, we express special values of the L-functions of certain CM elliptic curves which are related to Fermat curves in terms of the special values of generalized hypergeometric functions by comparing Bloch’s element with Ross’s element in the motivic cohomology group.

AMSC: 19F27, 33C20

References

  • [1] M. Asakura, M. Chida and F. Brunault , A numerical approach toward the p-adic Beilinson conjecture for elliptic curves over , Res. Math. Sci. 10(1) (2023) 11. Crossref, Web of ScienceGoogle Scholar
  • [2] A. Beilinson , Higher regulators and values of L-functions, J. Soviet Math. 30 (1985) 2036–2070. CrossrefGoogle Scholar
  • [3] S. Bloch , Lectures on Algebraic Cycles, Duke University Mathematics Series, Vol. IV (Duke University, Mathematics Department, Durham, NC, 1980). Google Scholar
  • [4] S. Bloch , Higher Regulators, Algebraic K-theory, and Zeta Functions of Elliptic Curves, CRM Monograph Series, Vol. 11 (American Mathematical Society, Providence, RI, 2000). Google Scholar
  • [5] C. Deninger and K. Wingberg , On the Beilinson conjectures for elliptic curves with complex multiplication, in Beilinson’s Conjectures on Special Values of L-functions, Perspectives in Mathematics, Vol. 4 (Academic Press, Boston, MA, 1988), pp. 249–272. CrossrefGoogle Scholar
  • [6] T. Dokchitser, R. de Jeu and D. Zagier , Numerical verification of Beilinson’s conjecture for K2 of hyperelliptic curves, Compos. Math. 142(2) (2006) 339–373. Crossref, Web of ScienceGoogle Scholar
  • [7] A. B. Goncharov and A. M. Levin , Zagier’s conjecture on L(E,2), Invent. Math. 132(2) (1998) 393–432. Crossref, Web of ScienceGoogle Scholar
  • [8] B. H. Gross and D. E. Rohrlich , Some results on the Mordell–Weil group of the Jacobian of the Fermat curve, Invent. Math. 44(3) (1978) 201–224. CrossrefGoogle Scholar
  • [9] R. Ito , The Beilinson conjectures for CM elliptic curves via hypergeometric functions, Ramanujan J. 45(2) (2018) 433–449. Crossref, Web of ScienceGoogle Scholar
  • [10] LMFDB Collab., The L-functions and modular forms database (2022), http://www.lmfdb.org. Google Scholar
  • [11] A. Mellit , Elliptic dilogarithms and parallel lines, J. Number Theory 204 (2019) 1–24. Crossref, Web of ScienceGoogle Scholar
  • [12] J. Nekovář , Beilinson’s conjectures, in Motives (Seattle, WA, 1991), Part 1, Proceedings of Symposia in Pure Mathematics, Vol. 55 (American Mathematical Society, Providence, RI, 1994), pp. 537–570. CrossrefGoogle Scholar
  • [13] N. Otsubo , On the regulator of Fermat motives and generalized hypergeometric functions, J. Reine Angew. Math. 660 (2011) 27–82. Web of ScienceGoogle Scholar
  • [14] N. Otsubo , Certain values of Hecke L-functions and generalized hypergeometric functions, J. Number Theory 131(4) (2011) 648–660. Crossref, Web of ScienceGoogle Scholar
  • [15] N. Otsubo , On the Abel–Jacobi maps of Fermat Jacobians, Math. Z. 270(1–2) (2012) 423–444. Crossref, Web of ScienceGoogle Scholar
  • [16] N. Otsubo , On special values of Jacobi-sum Hecke L-functions, Exp. Math. 24(2) (2015) 247–259. Crossref, Web of ScienceGoogle Scholar
  • [17] N. Otsubo , Homology of the Fermat tower and universal measures for Jacobi sums, Canad. Math. Bull. 59(3) (2016) 624–640. Crossref, Web of ScienceGoogle Scholar
  • [18] M. Rogers and W. Zudilin , From L-series of elliptic curves to Mahler measures, Compos. Math. 148(2) (2012) 385–414. Crossref, Web of ScienceGoogle Scholar
  • [19] D. E. Rohrlich , On the periods of abelian integrals and a formula of Chowla and Selberg, Invent. Math. 45(2) (1978) 193–211, Appendix to: B. H. Gross. CrossrefGoogle Scholar
  • [20] R. Ross , K2 of Fermat curves with divisorial support at infinity, Compos. Math. 91(3) (1994) 223–240. Web of ScienceGoogle Scholar
  • [21] S. Rosset and J. Tate , A reciprocity law for K2-traces, Comment. Math. Helv. 58(1) (1983) 38–47. CrossrefGoogle Scholar