Large algebraic integers
Abstract
An algebraic integer is said large if all its real or complex embeddings have absolute value larger than . An integral ideal is said large if it admits a large generator. We investigate the notion of largeness, relating it to some arithmetic invariants of the field involved, such as the regulator and the covering radius of the lattice of units. We also study its connection with the Weil height and the Bogomolov property. We provide an algorithm for testing largeness and give some applications to the construction of floor functions arising in the theory of continued fractions.
References
- 1. , Covolumes, unités, régulateur: Conjectures de D. Bertrand et F. Rodriguez-Villegas, Ann. Math. Qué. 45(1) (2021) 1–18. Crossref, Web of Science, Google Scholar
- 2. , On fields with Property (B), Proc. Am. Math. Soc. 142(6) (2014) 1893–1910. Crossref, Web of Science, Google Scholar
- 3. , A lower bound for the height in abelian extensions, J. Number Theory 80(2) (2000) 260–272. Crossref, Web of Science, Google Scholar
- 4. , A note on p-adic continued fractions, Ann. Mat. Pura Appl. 152 (1988) 197–207. Crossref, Web of Science, Google Scholar
- 5. , Remarks on periods of -adic continued fractions, Bollettino Unione Mat. Ital. 7(3-A) (1989) 209–214. Google Scholar
- 6. , Sur le developpement de en fraction continue -adique, Manuscripta Math. 67 (1990) 187–195. Crossref, Web of Science, Google Scholar
- 7. , Notions relatives de régulateurs et de hauteurs, Acta Arith. 54(2) (1989) 155–170. Crossref, Web of Science, Google Scholar
- 8. , Heights in Diophantine Geometry,
New Mathematical Monographs , Vol. 4 (Cambridge University Press, Cambridge, 2006). Google Scholar - 9. , Continued fractions in local fields I, Demonstr. Math. 11 (1978) 67–82. Google Scholar
- 10. , Continued fractions in local fields II, Math. Comput. 70 (2000) 1281–1292. Crossref, Web of Science, Google Scholar
- 11. L. Capuano, N. Murru and L. Terracini, On periodicity of -adic Browkin continued fractions (2020), https://arxiv.org/abs/2010.07364. Google Scholar
- 12. , On the finiteness of -adic continued fractions for number fields, Bull. Soc. Math. France 150(4) (2022) 743–772. Web of Science, Google Scholar
- 13. , An effective criterion for periodicity of -adic continued fractions, Math. Comput. 88 (2019) 1851–1882. Crossref, Web of Science, Google Scholar
- 14. , Local Fields (London Mathematical Society Student Texts) (Cambridge University Press, Cambridge, 1986). Google Scholar
- 15. . Relative regulators of number fields, Invent. Math. 135(1) (1999) 115–144. Crossref, Web of Science, Google Scholar
- 16. , Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Math. 53 (1857) 173–175. Crossref, Google Scholar
- 17. , A characterization of rational numbers by -adic Ruban continued fractions, J. Austral. Math. Soc. Ser. A 39 (1985) 300–305. Crossref, Google Scholar
- 18. , Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976) 248–256. Web of Science, Google Scholar
- 19. , Complexity of Lattice Problems.
The Kluwer International Series in Engineering and Computer Science ,, Vol. 671 (Kluwer Academic Publishers, Boston, MA, 2002). Crossref, Google Scholar - 20. , Elementary and Analytic Theory of Algebraic Numbers, 3rd edn.,
Springer Monographs in Mathematics (Springer-Verlag, Berlin, 2004). Crossref, Google Scholar - 21. , Certain metric properties of the -adic numbers, Sibirsk. Mat. Ž 11 (1970) 222–227. Google Scholar
- 22. , On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973) 385–399. Addendum; ibid., 26 (1973) 329–361. Crossref, Google Scholar
- 23. , An inequality relating the regulator and the discriminant of a number field, JNT 19 (1984) 437–442. Web of Science, Google Scholar
- 24. The PARI Group, Univ. Bordeaux, PARI/GP version 2.13.4, (2022), Available at http://pari.math.u-bordeaux.fr/. Google Scholar
- 25. , -adic continued fractions. I, II, Sci. Sin. Ser. A 28(10) (1985) 1009–1017, 1018–1023. Google Scholar
- 26. , Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math. 62(3) (1981) 367–380 (in German). Crossref, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out new Number Theory books in our Mathematics 2021 catalogue |