World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Large algebraic integers

    https://doi.org/10.1142/S1793042123501075Cited by:0 (Source: Crossref)

    An algebraic integer is said large if all its real or complex embeddings have absolute value larger than 1. An integral ideal is said large if it admits a large generator. We investigate the notion of largeness, relating it to some arithmetic invariants of the field involved, such as the regulator and the covering radius of the lattice of units. We also study its connection with the Weil height and the Bogomolov property. We provide an algorithm for testing largeness and give some applications to the construction of floor functions arising in the theory of continued fractions.

    AMSC: 11H31, 11R27, 11R33, 11Y40, 11G50

    References

    • 1. F. Amoroso and S. David, Covolumes, unités, régulateur: Conjectures de D. Bertrand et F. Rodriguez-Villegas, Ann. Math. Qué. 45(1) (2021) 1–18. Crossref, Web of ScienceGoogle Scholar
    • 2. F. Amoroso, S. David and U. Zannier, On fields with Property (B), Proc. Am. Math. Soc. 142(6) (2014) 1893–1910. Crossref, Web of ScienceGoogle Scholar
    • 3. F. Amoroso and R. Dvornicich, A lower bound for the height in abelian extensions, J. Number Theory 80(2) (2000) 260–272. Crossref, Web of ScienceGoogle Scholar
    • 4. E. Bedocchi, A note on p-adic continued fractions, Ann. Mat. Pura Appl. 152 (1988) 197–207. Crossref, Web of ScienceGoogle Scholar
    • 5. E. Bedocchi, Remarks on periods of p-adic continued fractions, Bollettino Unione Mat. Ital. 7(3-A) (1989) 209–214. Google Scholar
    • 6. E. Bedocchi, Sur le developpement de m en fraction continue p-adique, Manuscripta Math. 67 (1990) 187–195. Crossref, Web of ScienceGoogle Scholar
    • 7. A.-M. Bergé and J. Martinet, Notions relatives de régulateurs et de hauteurs, Acta Arith. 54(2) (1989) 155–170. Crossref, Web of ScienceGoogle Scholar
    • 8. E. Bombieri and W. Gubler, Heights in Diophantine Geometry, New Mathematical Monographs, Vol. 4 (Cambridge University Press, Cambridge, 2006). Google Scholar
    • 9. J. Browkin, Continued fractions in local fields I, Demonstr. Math. 11 (1978) 67–82. Google Scholar
    • 10. J. Browkin, Continued fractions in local fields II, Math. Comput. 70 (2000) 1281–1292. Crossref, Web of ScienceGoogle Scholar
    • 11. L. Capuano, N. Murru and L. Terracini, On periodicity of p-adic Browkin continued fractions (2020), https://arxiv.org/abs/2010.07364. Google Scholar
    • 12. L. Capuano, N. Murru and L. Terracini, On the finiteness of 𝔓-adic continued fractions for number fields, Bull. Soc. Math. France 150(4) (2022) 743–772. Web of ScienceGoogle Scholar
    • 13. L. Capuano, Veneziano and U. Zannier, An effective criterion for periodicity of -adic continued fractions, Math. Comput. 88 (2019) 1851–1882. Crossref, Web of ScienceGoogle Scholar
    • 14. J. Cassels, Local Fields (London Mathematical Society Student Texts) (Cambridge University Press, Cambridge, 1986). Google Scholar
    • 15. E. Friedman and N.-P. Skoruppa. Relative regulators of number fields, Invent. Math. 135(1) (1999) 115–144. Crossref, Web of ScienceGoogle Scholar
    • 16. L. Kronecker, Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten, J. Reine Angew. Math. 53 (1857) 173–175. CrossrefGoogle Scholar
    • 17. V. Laohakosol, A characterization of rational numbers by p-adic Ruban continued fractions, J. Austral. Math. Soc. Ser. A 39 (1985) 300–305. CrossrefGoogle Scholar
    • 18. J. Masley and H. Montgomery, Cyclotomic fields with unique factorization, J. Reine Angew. Math. 286/287 (1976) 248–256. Web of ScienceGoogle Scholar
    • 19. D. Micciancio and S. Goldwasser, Complexity of Lattice Problems. The Kluwer International Series in Engineering and Computer Science,, Vol. 671 (Kluwer Academic Publishers, Boston, MA, 2002). CrossrefGoogle Scholar
    • 20. W. Narkiewicz, Elementary and Analytic Theory of Algebraic Numbers, 3rd edn., Springer Monographs in Mathematics (Springer-Verlag, Berlin, 2004). CrossrefGoogle Scholar
    • 21. A. A. Ruban, Certain metric properties of the p-adic numbers, Sibirsk. Mat. Ž 11 (1970) 222–227. Google Scholar
    • 22. A. Schinzel, On the product of the conjugates outside the unit circle of an algebraic number, Acta Arith. 24 (1973) 385–399. Addendum; ibid., 26 (1973) 329–361. CrossrefGoogle Scholar
    • 23. J. H. Silverman, An inequality relating the regulator and the discriminant of a number field, JNT 19 (1984) 437–442. Web of ScienceGoogle Scholar
    • 24. The PARI Group, Univ. Bordeaux, PARI/GP version 2.13.4, (2022), Available at http://pari.math.u-bordeaux.fr/. Google Scholar
    • 25. L. X. Wang, p-adic continued fractions. I, II, Sci. Sin. Ser. A 28(10) (1985) 1009–1017, 1018–1023. Google Scholar
    • 26. R. Zimmert, Ideale kleiner Norm in Idealklassen und eine Regulatorabschätzung, Invent. Math. 62(3) (1981) 367–380 (in German). CrossrefGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out new Number Theory books in our Mathematics 2021 catalogue