World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

THE THEOREM OF JENTZSCH–SZEGŐ ON AN ANALYTIC CURVE: APPLICATION TO THE IRREDUCIBILITY OF TRUNCATIONS OF POWER SERIES

    https://doi.org/10.1142/S1793042111004691Cited by:1 (Source: Crossref)

    A theorem of Jentzsch–Szegő describes the limit measure of a sequence of discrete measures associated to zeroes of a sequence of polynomials in one variable. Following the presentation by Andrievskii and Blatt in [Discrepancy of Signed Measures and Polynomial Approximation, Springer Monographs in Mathematics (Springer-Verlag, New York, 2002)] we extend this theorem to compact Riemann surfaces and to analytic curves in the sense of Berkovich over ultrametric fields, using classical potential theory in the former case, and Baker/Rumely, Thuillier's potential theory on analytic curves in the latter case. We then apply this equidistribution theorem to the question of irreducibility of truncations of power series with coefficients in ultrametric fields.

    Résumé français: Le théorème de Jentzsch–Szegő décrit la mesure limite d'une suite de mesures discrètes associée aux zéros d'une suite convenable de polynômes en une variable. Suivant la présentation que font Andrievskii et Blatt dans [Discrepancy of Signed Measures and Polynomial Approximation, Springer Monographs in Mathematics (Springer-Verlag, New York, 2002)] on étend ici ce résultat aux surfaces de Riemann compactes, puis aux courbes analytiques sur un corps ultramétrique. On donne pour finir quelques corollaires du cas particulier de la droite projective sur un corps ultramétrique à l'irréductibilité des polynômes-sections d'une série entière en une variable.

    AMSC: 11S05, 30C15, 30G06

    References

    • V. V.   Andrievskii and H.-P.   Blatt , Discrepancy of Signed Measures and Polynomial Approximation , Springer Monographs in Mathematics ( Springer-Verlag , New York , 2002 ) . CrossrefGoogle Scholar
    • M.   Baker and R.   Rumely , Potential Theory on the Berkovich Projective Line , Mathematical Surveys and Monographs   159 ( American Mathematical Society , Providence, RI , 2010 ) . CrossrefGoogle Scholar
    • V. G.   Berkovich , Spectral Theory and Analytic Geometry over Non-Archimedean Fields , Mathematical Surveys and Monographs   33 ( American Mathematical Society , Providence, RI , 1990 ) . Google Scholar
    • M. Brelot, Lectures on Potential Theory, Tata Institute of Fundamental Research Lectures on Mathematics, No. 19 (Tata Institute of Fundamental Research, Bombay, 1967); notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy, 2nd edn. revised and enlarged with the help of S. Ramaswamy . Google Scholar
    • R. F. Coleman, Enseign. Math. (2) 33(4), 183 (1987). Web of ScienceGoogle Scholar
    • C.   Favre and M.   Jonsson , The Valuative Tree , Lecture Notes in Mathematics   1853 ( Springer-Verlag , Berlin , 2004 ) . CrossrefGoogle Scholar
    • C. Favre and J. Rivera-Letelier, Math. Ann. 335(2), 311 (2006), DOI: 10.1007/s00208-006-0751-x. Crossref, Web of ScienceGoogle Scholar
    • R. Jentzsch, Acta Math. 41(1), 253 (1916), DOI: 10.1007/BF02422946. CrossrefGoogle Scholar
    • T.   Ransford , Potential Theory in the Complex Plane ( Cambridge University Press , Cambridge , 1995 ) . CrossrefGoogle Scholar
    • R. S.   Rumely , Capacity Theory on Algebraic Curves , Lecture Notes in Mathematics   1378 ( Springer-Verlag , Berlin , 1989 ) . CrossrefGoogle Scholar
    • I. Schur, Gleichungen ohne Affekt, Sitzungsberichte Preuss. Akad. Wiss. Phys.-Math. Klasse (1930) 443–449; reproduced in Gesammelte Abhandlungen, pp. 191–197 . Google Scholar
    • G. Szegő, Sitzungsber. Ber. Math. Ges. 21, 59 (1922). Google Scholar
    • A. Thuillier, Théorie du potentiel sur les courbes en géométrie non archimédienne. Applications à la théorie d'Arakelov, Ph.D. thesis, Université de Rennes 1 (2005); http://tel.archives-ouvertes.fr/tel-00010990/ . Google Scholar
    • M.   Tsuji , Potential Theory in Modern Function Theory ( Chelsea Publishing , New York , 1975 ) . Google Scholar