THE THEOREM OF JENTZSCH–SZEGŐ ON AN ANALYTIC CURVE: APPLICATION TO THE IRREDUCIBILITY OF TRUNCATIONS OF POWER SERIES
Abstract
A theorem of Jentzsch–Szegő describes the limit measure of a sequence of discrete measures associated to zeroes of a sequence of polynomials in one variable. Following the presentation by Andrievskii and Blatt in [Discrepancy of Signed Measures and Polynomial Approximation, Springer Monographs in Mathematics (Springer-Verlag, New York, 2002)] we extend this theorem to compact Riemann surfaces and to analytic curves in the sense of Berkovich over ultrametric fields, using classical potential theory in the former case, and Baker/Rumely, Thuillier's potential theory on analytic curves in the latter case. We then apply this equidistribution theorem to the question of irreducibility of truncations of power series with coefficients in ultrametric fields.
Résumé français: Le théorème de Jentzsch–Szegő décrit la mesure limite d'une suite de mesures discrètes associée aux zéros d'une suite convenable de polynômes en une variable. Suivant la présentation que font Andrievskii et Blatt dans [Discrepancy of Signed Measures and Polynomial Approximation, Springer Monographs in Mathematics (Springer-Verlag, New York, 2002)] on étend ici ce résultat aux surfaces de Riemann compactes, puis aux courbes analytiques sur un corps ultramétrique. On donne pour finir quelques corollaires du cas particulier de la droite projective sur un corps ultramétrique à l'irréductibilité des polynômes-sections d'une série entière en une variable.
References
-
V. V. Andrievskii and H.-P. Blatt , Discrepancy of Signed Measures and Polynomial Approximation ,Springer Monographs in Mathematics ( Springer-Verlag , New York , 2002 ) . Crossref, Google Scholar -
M. Baker and R. Rumely , Potential Theory on the Berkovich Projective Line ,Mathematical Surveys and Monographs 159 ( American Mathematical Society , Providence, RI , 2010 ) . Crossref, Google Scholar -
V. G. Berkovich , Spectral Theory and Analytic Geometry over Non-Archimedean Fields ,Mathematical Surveys and Monographs 33 ( American Mathematical Society , Providence, RI , 1990 ) . Google Scholar - M. Brelot, Lectures on Potential Theory, Tata Institute of Fundamental Research Lectures on Mathematics, No. 19 (Tata Institute of Fundamental Research, Bombay, 1967); notes by K. N. Gowrisankaran and M. K. Venkatesha Murthy, 2nd edn. revised and enlarged with the help of S. Ramaswamy . Google Scholar
- Enseign. Math. (2) 33(4), 183 (1987). Web of Science, Google Scholar
-
C. Favre and M. Jonsson , The Valuative Tree ,Lecture Notes in Mathematics 1853 ( Springer-Verlag , Berlin , 2004 ) . Crossref, Google Scholar - Math. Ann. 335(2), 311 (2006), DOI: 10.1007/s00208-006-0751-x. Crossref, Web of Science, Google Scholar
- Acta Math. 41(1), 253 (1916), DOI: 10.1007/BF02422946. Crossref, Google Scholar
-
T. Ransford , Potential Theory in the Complex Plane ( Cambridge University Press , Cambridge , 1995 ) . Crossref, Google Scholar -
R. S. Rumely , Capacity Theory on Algebraic Curves ,Lecture Notes in Mathematics 1378 ( Springer-Verlag , Berlin , 1989 ) . Crossref, Google Scholar - I. Schur, Gleichungen ohne Affekt, Sitzungsberichte Preuss. Akad. Wiss. Phys.-Math. Klasse (1930) 443–449; reproduced in Gesammelte Abhandlungen, pp. 191–197 . Google Scholar
- Sitzungsber. Ber. Math. Ges. 21, 59 (1922). Google Scholar
- A. Thuillier, Théorie du potentiel sur les courbes en géométrie non archimédienne. Applications à la théorie d'Arakelov, Ph.D. thesis, Université de Rennes 1 (2005); http://tel.archives-ouvertes.fr/tel-00010990/ . Google Scholar
-
M. Tsuji , Potential Theory in Modern Function Theory ( Chelsea Publishing , New York , 1975 ) . Google Scholar