World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SMALLEST IRREDUCIBLE OF THE FORM x2-dy2

    https://doi.org/10.1142/S1793042109002158Cited by:0 (Source: Crossref)

    It is a classical result that prime numbers of the form x2 + ny2 can be characterized via class field theory for an infinite set of n. In this paper, we derive the function field analogue of the classical result. Then, we apply an effective version of the Chebotarev density theorem to bound the degree of the smallest irreducible of the form x2 - dy2, where x, y, and d are elements of a polynomial ring over a finite field.

    AMSC: 11R37, 11R29

    References

    • D. A.   Cox , Primes of the Form x2 + ny2 ( Wiley , New York , 1989 ) . Google Scholar
    • J. C. Lagarias and A. M. Odlyzko, Algebraic Number Fields, ed. A. Frölich (Academic Press, London, 1977) pp. 409–464. Google Scholar
    • K. Murty and J. Scherk, C. R. Acad. Sci. Paris 319, 523 (1994). Web of ScienceGoogle Scholar
    • M. Rosen, Expo. Math. 5, 365 (1987). Google Scholar
    • M.   Rosen , Number Theory in Function Fields ( Springer-Verlag , New York , 2002 ) . CrossrefGoogle Scholar