World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Initial Correlations and Complete Positivity of Dynamical Maps

    https://doi.org/10.1142/S1230161223500117Cited by:1 (Source: Crossref)

    It is now increasingly realized in the study of open system dynamics that initial correlations do not pose a conceptual difficulty as traditionally believed. A similar methodology as used to describe initial product states can be adopted, with the only difference being that the reduced dynamics is possibly not completely positive, entailing that only a restricted set of initial reduced states lead to a physically valid dynamics. Here we study the interplay between the initial correlations, especially in the form of highly entangled states, and the system–environment unitary. In particular, for almost any initial entangled state, one can furnish infinitely many joint unitaries that generate CP dynamics on the system. Restricting to the case of initial, pure entangled states, we obtain the scaling of the dimension of the set of these unitaries and show that it is of zero measure in the set of all possible interaction unitaries.

    References

    • 1. H.-P. Breuer and F. Petruccione. The theory of open quantum systems. Oxford University Press, 2002. Google Scholar
    • 2. R. F. Simmons and James L. Park. On completely positive maps in generalized quantum dynamics. Found. Phys., 11, 47, (1981). Crossref, Web of ScienceGoogle Scholar
    • 3. G. A. Raggio and H. Primas. Remarks on “On completely positive maps in generalized quantum dynamics”. Found. Phys., 12, 433 (1982). Crossref, Web of ScienceGoogle Scholar
    • 4. R. F. Simmons and J. L. Park. Another look at complete positivity in generalized quantum dynamics: Reply to Raggio and Primas. Found. Phys., 12, 437 (1982). Crossref, Web of ScienceGoogle Scholar
    • 5. P. Pechukas. Reduced Dynamics Need Not Be Completely Positive. Phys. Rev. Lett., 73, 1060 (1994). Crossref, Web of ScienceGoogle Scholar
    • 6. R. Alicki. Comment on “Reduced Dynamics Need Not Be Completely Positive”. Phys. Rev. Lett., 75, 3020 (1995). Crossref, Web of ScienceGoogle Scholar
    • 7. P. Pechukas. Pechukas Replies:. Phys. Rev. Lett., 75, 3021 (1995). Crossref, Web of ScienceGoogle Scholar
    • 8. T. F. Jordan, A. Shaji and E. C. G. Sudarshan. Dynamics of initially entangled open quantum systems. Phys. Rev. A, 70, 052110 (2004). Crossref, Web of ScienceGoogle Scholar
    • 9. H. A. Carteret, D. R. Terno and K. Życzkowski. Dynamics beyond completely positive maps: Some properties and applications. Phys. Rev. A, 77(4) :042113, April 2008. Crossref, Web of ScienceGoogle Scholar
    • 10. M. E. Cuffaro and W. C. Myrvold. On the Debate Concerning the Proper Characterization of Quantum Dynamical Evolution. Philos. Sci., 80, 1125 (2013). Crossref, Web of ScienceGoogle Scholar
    • 11. P. Štelmachovič and V. Bužek. Dynamics of open quantum systems initially entangled with environment: Beyond the Kraus representation. Phys. Rev. A, 64, 062106 (2001). Crossref, Web of ScienceGoogle Scholar
    • 12. D. Salgado and J. L. Sanchez-Gomez. Comment on “Dynamics of open quantum systems initially entangled with environment: Beyond the Kraus representation”. arXiv:quant-ph/0211164, (2002). arXiv:quant-ph/0211164 Google Scholar
    • 13. H. Hayashi, G. Kimura and Y. Ota. Kraus representation in the presence of initial correlations. Phys. Rev. A, 67, 062109 (2003). Crossref, Web of ScienceGoogle Scholar
    • 14. E. Chitambar, A. Abu-Nada, R. Ceballos and M. Byrd. Restrictions on initial system-environment correlations based on the dynamics of an open quantum system. Phys. Rev. A, 92, 052110 (2015). Crossref, Web of ScienceGoogle Scholar
    • 15. A. Shabani and D. A. Lidar. Vanishing Quantum Discord is Necessary and Sufficient for Completely Positive Maps. Phys. Rev. Lett., 102, 100402 (2009). Crossref, Web of ScienceGoogle Scholar
    • 16. A. Shabani and D. A. Lidar. Erratum: Vanishing Quantum Discord is Necessary and Sufficient for Completely Positive Maps [Phys. Rev. Lett. 102, 100402 (2009)]. Phys. Rev. Lett., 116, 049901(2016). Crossref, Web of ScienceGoogle Scholar
    • 17. J. M. Dominy, A. Shabani and D. A. Lidar. A general framework for complete positivity. Quantum Inf. Process., 15, 465 (2016). Crossref, Web of ScienceGoogle Scholar
    • 18. A. Colla, N. Neubrand and H.-P. Breuer. Initial correlations in open quantum systems: constructing linear dynamical maps and master equations. New J. Phys., 24, 123005 (2022). Crossref, Web of ScienceGoogle Scholar
    • 19. V. Gorini, A. Kossakowski and E. C. G. Sudarshan. Completely Positive Dynamical Semigroups of N Level Systems. J. Math. Phys., 17, 821 (1976). Crossref, Web of ScienceGoogle Scholar
    • 20. G. Lindblad. On the generators of quantum dynamical semigroups. Commun. Math. Phys., 48, 119 (1976). Crossref, Web of ScienceGoogle Scholar
    • 21. L. Liu and D. M. Tong. Completely positive maps within the framework of direct-sum decomposition of state space. Phys. Rev. A, 90, 012305 (2014). Crossref, Web of ScienceGoogle Scholar
    • 22. X.-M. Lu. Structure of correlated initial states that guarantee completely positive reduced dynamics. Phys. Rev. A, 93, 042332 (2016). Crossref, Web of ScienceGoogle Scholar
    • 23. F. Buscemi. Complete Positivity, Markovianity, and the Quantum Data-Processing Inequality, in the Presence of Initial System-Environment Correlations. Phys. Rev. Lett., 113, 140502 (2014). Crossref, Web of ScienceGoogle Scholar
    • 24. E. C. G. Sudarshan, P. M. Mathews and J. Rau. Stochastic Dynamics of Quantum-Mechanical Systems. Phys. Rev., 121, 920 (1961). Crossref, Web of ScienceGoogle Scholar
    • 25. V. Jagadish and F. Petruccione. An invitation to quantum channels. Quanta, 7, 54 (2018). CrossrefGoogle Scholar
    • 26. Á. Rivas, S. F. Huelga and M. B. Plenio. Entanglement and Non-Markovianity of Quantum Evolutions. Phys. Rev. Lett., 105, 050403 (2010). Crossref, Web of ScienceGoogle Scholar
    • 27. V. Jagadish, R. Srikanth and F. Petruccione. Measure of not-completely-positive qubit maps: The general case. Phys. Rev. A, 100, 012336 (2019). Crossref, Web of ScienceGoogle Scholar
    • 28. M J. W. Hall, J. D. Cresser, L. Li and E. Andersson. Canonical form of master equations and characterization of non-markovianity. Phys. Rev. A, 89, 042120 (2014). Crossref, Web of ScienceGoogle Scholar
    • 29. D. Schmid, K. Ried and R. W. Spekkens. Why initial system-environment correlations do not imply the failure of complete positivity: a causal perspective. Phys. Rev. A, 100, 022112 (2019). Crossref, Web of ScienceGoogle Scholar