On the Use of Total State Decompositions for the Study of Reduced Dynamics
Abstract
The description of the dynamics of an open quantum system in the presence of initial correlations with the environment needs different mathematical tools than the standard approach to reduced dynamics, which is based on the use of a time-dependent completely positive trace preserving (CPTP) map. Here, we take into account an approach that is based on a decomposition of any possibly correlated bipartite state as a conical combination involving statistical operators on the environment and general linear operators on the system, which allows one to fix the reduced-system evolution via a finite set of time-dependent CPTP maps. In particular, we show that such a decomposition always exists, also for infinite dimensional Hilbert spaces, and that the number of resulting CPTP maps is bounded by the Schmidt rank of the initial global state. We further investigate the case where the CPTP maps are semigroups with generators in the Gorini-Kossakowski-Lindblad-Sudarshan form; for two simple qubit models, we identify the positivity domain defined by the initial states that are mapped into proper states at any time of the evolution fixed by the CPTP semigroups.
References
- 1. , Coherent States, Wavelets, and Their Generalizations.
Theor. Math. Physics , Springer, 2000. Crossref, Google Scholar - 2. , Phys. Rev. Lett. 75, 3020 (1995). Crossref, Web of Science, Google Scholar
- 3. , Geometry of quantum states: an introduction to quantum entanglement, Cambridge Univ. Press, 2006. Crossref, Google Scholar
- 4. , Phys. Rev. A 75, 022103 (2007). Crossref, Web of Science, Google Scholar
- 5. , The Theory of Open Quantum Systems. Oxford Univ. Press, 2002. Google Scholar
- 6. , Phys. Rev. A 87, 042301 (2013). Crossref, Web of Science, Google Scholar
- 7. , Phys. Rev. Lett. 113, 140502 (2014). Crossref, Web of Science, Google Scholar
- 8. , Quantum Inf. Comput. 14, 1308 (2014). Web of Science, Google Scholar
- 9. , Quantum Inf. Comput. 15, 812 (2015). Web of Science, Google Scholar
- 10. , PRX Quantum 2, 030315 (2021). Crossref, Google Scholar
- 11. , Phys. Rev. Lett. 104, 070406 (2010). Crossref, Web of Science, Google Scholar
- 12. , Int. J. Quant. Inf. 09, 129 (2011). Link, Web of Science, Google Scholar
- 13. , EPL 97, 20005 (2012). Crossref, Web of Science, Google Scholar
- 14. , Phys. Lett. A 377, 1425 (2013). Crossref, Web of Science, Google Scholar
- 15. , Quant. Inf. Proc. 15, 1349 (2016). Crossref, Web of Science, Google Scholar
- 16. , J. Math. Phys. 17, 821 (1976). Crossref, Web of Science, Google Scholar
- 17. , Phys. Rep. 168, 115 (1988). Crossref, Web of Science, Google Scholar
- 18. , Phys. Rev. A 101, 042127 (2020). Crossref, Web of Science, Google Scholar
- 19. , J. Phys. A: Math. and Gen. 34, 6899 (2001). Crossref, Google Scholar
- 20. , Phys. Rev. A 64, 062106 (2001). Crossref, Web of Science, Google Scholar
- 21. , Phys. Rev. A 70, 052110 (2004). Crossref, Web of Science, Google Scholar
- 22. , Phys. Rev. A 73, 012106 (2006). Crossref, Web of Science, Google Scholar
- 23. , Phys. Lett. A 314, 339 (2003). Crossref, Web of Science, Google Scholar
- 24. , Commun. Math. Phys. 48, 119 (1976). Crossref, Web of Science, Google Scholar
- 25. , J. Phys. A: Math. Gen. 29, 4197 (1996). Crossref, Google Scholar
- 26. , Eur. Phys. J. D 73, 16 (2019). Crossref, Web of Science, Google Scholar
- 27. , Sci. Rep. 7, 6379 (2017). Crossref, Web of Science, Google Scholar
- 28. M. Merkli, arXiv:2107.02515 (2021). Google Scholar
- 29. , Rev. Mod. Phys. 84, 1655 (2012). Crossref, Web of Science, Google Scholar
- 30. , EPL 84, 67001 (2008). Crossref, Web of Science, Google Scholar
- 31. , Phys. Rev. Lett. 88, 017901 (2001). Crossref, Web of Science, Google Scholar
- 32. , Phys. Rev. A 100, 042120 (2019). Crossref, Web of Science, Google Scholar
- 33. , Phys. Rev. Lett. 73, 1060 (1994). Crossref, Web of Science, Google Scholar
- 34. , Chem. Phys. 370, 98 (2010). Crossref, Web of Science, Google Scholar
- 35. , J. Math. Phys. 45, 2171 (2004). Crossref, Web of Science, Google Scholar
- 36. , Rep. Progr. Phys. 77, 094001 (2014). Crossref, Web of Science, Google Scholar
- 37. , J. Phys. A: Math. Theor. 41, 205301 (2008). Crossref, Web of Science, Google Scholar
- 38. , Phys. Rev. A 100, 022112 (2019). Crossref, Web of Science, Google Scholar
- 39. , Phys. Rev. Lett. 102, 100402 (2009). Crossref, Web of Science, Google Scholar
- 40. , Phys. Rev. A 104, 052215 (2021). Crossref, Web of Science, Google Scholar
- 41. , J. Phys. B: Atomic, Molecular and Optical Physics 45, 154007 (2012). Crossref, Web of Science, Google Scholar
- 42. , Sci. Rep. 6, 37328 (2016). Crossref, Web of Science, Google Scholar