World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

On the Use of Total State Decompositions for the Study of Reduced Dynamics

    https://doi.org/10.1142/S1230161222500081Cited by:0 (Source: Crossref)

    The description of the dynamics of an open quantum system in the presence of initial correlations with the environment needs different mathematical tools than the standard approach to reduced dynamics, which is based on the use of a time-dependent completely positive trace preserving (CPTP) map. Here, we take into account an approach that is based on a decomposition of any possibly correlated bipartite state as a conical combination involving statistical operators on the environment and general linear operators on the system, which allows one to fix the reduced-system evolution via a finite set of time-dependent CPTP maps. In particular, we show that such a decomposition always exists, also for infinite dimensional Hilbert spaces, and that the number of resulting CPTP maps is bounded by the Schmidt rank of the initial global state. We further investigate the case where the CPTP maps are semigroups with generators in the Gorini-Kossakowski-Lindblad-Sudarshan form; for two simple qubit models, we identify the positivity domain defined by the initial states that are mapped into proper states at any time of the evolution fixed by the CPTP semigroups.

    References