World Scientific
  • Search
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Accessible Maps in a Group of Classical or Quantum Channels

    We study the problem of accessibility in a set of classical and quantum channels admitting a group structure. Group properties of the set of channels, and the structure of the closure of the analyzed group G plays a pivotal role in this regard. The set of all convex combinations of the group elements contains a subset of channels that are accessible by a dynamical semigroup. We demonstrate that accessible channels are determined by probability vectors of weights of a convex combination of the group elements, which depend neither on the dimension of the space on which the channels act, nor on the specific representation of the group. Investigating geometric properties of the set 𝒜 of accessible maps we show that this set is nonconvex, but it enjoys the star-shape property with respect to the uniform mixture of all elements of the group. We demonstrate that the set 𝒜 covers a positive volume in the polytope of all convex combinations of the elements of the group.

    Dedicated to the memory of Prof. Andrzej Kossakowski (1938–2021)


    • 1. V. Gorini, A. Kossakowski, and E. C. G. Sudarshan , “ Completely positive dynamical semigroups of N-level systems”, J. Math. Phys. 17, 821 (1976). Crossref, ISIGoogle Scholar
    • 2. G. Lindblad , “ On the generators of quantum dynamical semigroups”, Commun. Math. Phys. 48, 119 (1976). Crossref, ISIGoogle Scholar
    • 3. D. Chruściński and S. Pascazio , “ A brief history of the GKLS Equation”, Open Sys. Information Dyn. 24, 1740001 (2017). Link, ISIGoogle Scholar
    • 4. M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac , “ Assessing non-Markovian dynamics”, Phys. Rev. Lett. 101, 150402 (2008). Crossref, ISIGoogle Scholar
    • 5. Á. Rivas, and S. F. Huelga , Open Quantum Systems. An Introduction, Springer, 2011. Google Scholar
    • 6. W. F. Stinespring , “ Positive functions on C-algebras”, Proc. American Math. Soc. 6, 211 (1955). Google Scholar
    • 7. J. F. C. Kingman , “ The imbedding problem for finite Markov chains”, Probab. Theory Relat. Fields 1, 14 (1962). Google Scholar
    • 8. J. T. Runnenburg , “ On Elfving’s problem of imbedding a time-discrete Markov chain in a time-continuous one for finitely many states”, Proc. Kon. Ned. Akad. Wet. Ser. A 65, 536 (1962). Google Scholar
    • 9. J. R. Cuthbert , “ The Logarithm Function for Finite-State Markov Semi-Groups”, J. London Math. Soc. s2-6(3), 524 (1973). CrossrefGoogle Scholar
    • 10. S. Johansen , J. London Math. Soc. s2-8(2), 345 (1974). CrossrefGoogle Scholar
    • 11. P. Carette , “ Characterizations of embeddable 3 × 3 stochastic matrices with a negative eigenvalue”, New York J. Math 1, 129 (1995). Google Scholar
    • 12. E. B. Davies , “ Embeddable Markov matrices”, Electron. J. Probab. 15, 1474 (2010). Crossref, ISIGoogle Scholar
    • 13. M. Casanellas, J. Fernàndez-Sànchez, and J. Roca-Lacostena, “The embedding problem for Markov matrices”, arXiv:2005.00818. Google Scholar
    • 14. K. Korzekwa and M. Lostaglio , “ Quantum advantage in simulating stochastic processes”, Phys. Rev. X 11, 021019 (2021). ISIGoogle Scholar
    • 15. L. V. Denisov , “ Infinitely divisible Markov mappings in quantum probability theory”, Theory Probab. Appl. 33, 392 (1989). Crossref, ISIGoogle Scholar
    • 16. M. M. Wolf and J. I. Cirac , “ Dividing quantum channels”, Commun. Math. Phys. 279, 147 (2008). Crossref, ISIGoogle Scholar
    • 17. T. S. Cubitt, J. Eisert, and M. M. Wolf , “ The complexity of relating quantum channels to master equations”, Commun. Math. Phys. 310, 383 (2012). Crossref, ISIGoogle Scholar
    • 18. D. Davalos, M. Ziman, and C. Pineda , “ Divisibility of qubit channels and dynamical maps”, Quantum 3, 144 (2019). Crossref, ISIGoogle Scholar
    • 19. Z. Puchała, Ł. Rudnicki, and K. Życzkowski , “ Pauli semigroups and unistochastic quantum channels”, Phys. Lett. A 383, 2376 (2019). Crossref, ISIGoogle Scholar
    • 20. S. Chakraborty and D. Chruściński , “ Information flow versus divisibility for qubit evolution”, Phys. Rev. A 99, 042105 (2019). Crossref, ISIGoogle Scholar
    • 21. V. Jagadish, R. Srikanth, and F. Petruccione , “ Convex combinations of Pauli semigroups: geometry, measure and an application”, Phys. Rev. A 101, 062304 (2020). Crossref, ISIGoogle Scholar
    • 22. K. Siudzińska and D. Chruściński , “ Memory kernel approach to generalized Pauli channels: Markovian, semi-Markov, and beyond”, Phys. Rev. A 96, 022129 (2017). Crossref, ISIGoogle Scholar
    • 23. M. C. Caro and B. Graswald , “ Necessary Criteria for Markovian Divisibility of Linear Maps”, J. Math. Phys. 62, 042203 (2021). Crossref, ISIGoogle Scholar
    • 24. F. Shahbeigi, D. Amaro-Alcalá, Z. Puchała, and K. Życzkowski , “ Log-Convex set of Lindblad semigroups acting on N-level system”, J. Math. Phys. 62, 072105 (2021). Crossref, ISIGoogle Scholar
    • 25. K. Siudzińska , “ Markovian semigroup from mixing non-invertible dynamical maps”, Phys. Rev. A 103, 022605 (2021). Crossref, ISIGoogle Scholar
    • 26. H. Weyl , “ Quantenmechanik und Gruppentheorie”, Z. Physik 46, 1 (1927). CrossrefGoogle Scholar
    • 27. F. Shahbeigi, K. Sadri, M. Moradi, K. Życzkowski, and V. Karimipour , “ Quasi-inversion of quantum and classical channels in finite dimensions”, J. Phys. A: Math. Theor. 54, 34 (2021). Crossref, ISIGoogle Scholar
    • 28. P. Lencastre, F. Raischel, T. Rogers, and P. G. Lind , “ From empirical data to time-inhomogeneous continuous Markov processes”, Phys. Rev. E 93, 032135 (2016). Crossref, ISIGoogle Scholar
    • 29. K. Korzekwa, S. Czachórski, Z. Puchała, and K. Życzkowski , “ Coherifying quantum channels”, New J. Phys. 20, 043028 (2018). Crossref, ISIGoogle Scholar
    • 30. R. Kukulski, I. Nechita, Ł. Pawela, Z. Puchała, and K. Życzkowski , “ Generating random quantum channels”, J. Math. Phys. 62, 062201 (2021). Crossref, ISIGoogle Scholar
    • 31. T. Baumgratz, M. Cramer, and M. B. Plenio , “ Quantifying coherence”, Phys. Rev. Lett. 113, 140401 (2014). Crossref, ISIGoogle Scholar
    • 32. M. Snamina and E. J. Zak, “Dynamical semigroups in the Birkhoff polytope of order 3 as a tool for analysis of quantum channels”, preprint arXiv:1811.09506. Google Scholar
    • 33. I. Bengtsson, A. Ericsson, M. Kuś, W. Tadej, and K. Życzkowski , “ Birkhoff’s polytope and unistochastic matrices, N = 3 and N = 4”, Commun. Math. Phys. 259, 307 (2005). Crossref, ISIGoogle Scholar