Accessible Maps in a Group of Classical or Quantum Channels
Abstract
We study the problem of accessibility in a set of classical and quantum channels admitting a group structure. Group properties of the set of channels, and the structure of the closure of the analyzed group plays a pivotal role in this regard. The set of all convex combinations of the group elements contains a subset of channels that are accessible by a dynamical semigroup. We demonstrate that accessible channels are determined by probability vectors of weights of a convex combination of the group elements, which depend neither on the dimension of the space on which the channels act, nor on the specific representation of the group. Investigating geometric properties of the set of accessible maps we show that this set is nonconvex, but it enjoys the star-shape property with respect to the uniform mixture of all elements of the group. We demonstrate that the set covers a positive volume in the polytope of all convex combinations of the elements of the group.
Dedicated to the memory of Prof. Andrzej Kossakowski (1938–2021)
References
- 1. , “ Completely positive dynamical semigroups of -level systems”, J. Math. Phys. 17, 821 (1976). Crossref, ISI, Google Scholar
- 2. , “ On the generators of quantum dynamical semigroups”, Commun. Math. Phys. 48, 119 (1976). Crossref, ISI, Google Scholar
- 3. , “ A brief history of the GKLS Equation”, Open Sys. Information Dyn. 24, 1740001 (2017). Link, ISI, Google Scholar
- 4. , “ Assessing non-Markovian dynamics”, Phys. Rev. Lett. 101, 150402 (2008). Crossref, ISI, Google Scholar
- 5. , Open Quantum Systems. An Introduction, Springer, 2011. Google Scholar
- 6. , “ Positive functions on -algebras”, Proc. American Math. Soc. 6, 211 (1955). Google Scholar
- 7. , “ The imbedding problem for finite Markov chains”, Probab. Theory Relat. Fields 1, 14 (1962). Google Scholar
- 8. , “ On Elfving’s problem of imbedding a time-discrete Markov chain in a time-continuous one for finitely many states”, Proc. Kon. Ned. Akad. Wet. Ser. A 65, 536 (1962). Google Scholar
- 9. , “ The Logarithm Function for Finite-State Markov Semi-Groups”, J. London Math. Soc. s2-6(3), 524 (1973). Crossref, Google Scholar
- 10. , J. London Math. Soc. s2-8(2), 345 (1974). Crossref, Google Scholar
- 11. , “ Characterizations of embeddable stochastic matrices with a negative eigenvalue”, New York J. Math 1, 129 (1995). Google Scholar
- 12. , “ Embeddable Markov matrices”, Electron. J. Probab. 15, 1474 (2010). Crossref, ISI, Google Scholar
- 13. M. Casanellas, J. Fernàndez-Sànchez, and J. Roca-Lacostena, “The embedding problem for Markov matrices”, arXiv:2005.00818. Google Scholar
- 14. , “ Quantum advantage in simulating stochastic processes”, Phys. Rev. X 11, 021019 (2021). ISI, Google Scholar
- 15. , “ Infinitely divisible Markov mappings in quantum probability theory”, Theory Probab. Appl. 33, 392 (1989). Crossref, ISI, Google Scholar
- 16. , “ Dividing quantum channels”, Commun. Math. Phys. 279, 147 (2008). Crossref, ISI, Google Scholar
- 17. , “ The complexity of relating quantum channels to master equations”, Commun. Math. Phys. 310, 383 (2012). Crossref, ISI, Google Scholar
- 18. , “ Divisibility of qubit channels and dynamical maps”, Quantum 3, 144 (2019). Crossref, ISI, Google Scholar
- 19. , “ Pauli semigroups and unistochastic quantum channels”, Phys. Lett. A 383, 2376 (2019). Crossref, ISI, Google Scholar
- 20. , “ Information flow versus divisibility for qubit evolution”, Phys. Rev. A 99, 042105 (2019). Crossref, ISI, Google Scholar
- 21. , “ Convex combinations of Pauli semigroups: geometry, measure and an application”, Phys. Rev. A 101, 062304 (2020). Crossref, ISI, Google Scholar
- 22. , “ Memory kernel approach to generalized Pauli channels: Markovian, semi-Markov, and beyond”, Phys. Rev. A 96, 022129 (2017). Crossref, ISI, Google Scholar
- 23. , “ Necessary Criteria for Markovian Divisibility of Linear Maps”, J. Math. Phys. 62, 042203 (2021). Crossref, ISI, Google Scholar
- 24. , “ Log-Convex set of Lindblad semigroups acting on -level system”, J. Math. Phys. 62, 072105 (2021). Crossref, ISI, Google Scholar
- 25. , “ Markovian semigroup from mixing non-invertible dynamical maps”, Phys. Rev. A 103, 022605 (2021). Crossref, ISI, Google Scholar
- 26. , “ Quantenmechanik und Gruppentheorie”, Z. Physik 46, 1 (1927). Crossref, Google Scholar
- 27. , “ Quasi-inversion of quantum and classical channels in finite dimensions”, J. Phys. A: Math. Theor. 54, 34 (2021). Crossref, ISI, Google Scholar
- 28. , “ From empirical data to time-inhomogeneous continuous Markov processes”, Phys. Rev. E 93, 032135 (2016). Crossref, ISI, Google Scholar
- 29. , “ Coherifying quantum channels”, New J. Phys. 20, 043028 (2018). Crossref, ISI, Google Scholar
- 30. , “ Generating random quantum channels”, J. Math. Phys. 62, 062201 (2021). Crossref, ISI, Google Scholar
- 31. , “ Quantifying coherence”, Phys. Rev. Lett. 113, 140401 (2014). Crossref, ISI, Google Scholar
- 32. M. Snamina and E. J. Zak, “Dynamical semigroups in the Birkhoff polytope of order 3 as a tool for analysis of quantum channels”, preprint arXiv:1811.09506. Google Scholar
- 33. , “ Birkhoff’s polytope and unistochastic matrices, and ”, Commun. Math. Phys. 259, 307 (2005). Crossref, ISI, Google Scholar