World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Three Favourite Dimensions of Andrzej: Along His Path to a Scientific Discovery

    https://doi.org/10.1142/S1230161221500177Cited by:0 (Source: Crossref)

    Some achievements of the late Andrzej Kossakowski in the field of statistical physics and quantum theory are presented. We recall also his attempt to find an analytical solution of the 3-dimensional Ising model.

    References

    • 1. A. Kossakowski , “ On quantum statistical mechanics of non-Hamiltonian systems”, Rep. Math. Phys. 3, 247 (1972). CrossrefGoogle Scholar
    • 2. V. Gorini, A. Kossakowski, and E. C.G. Sudarshan , “ Completely positive dynamical semigroups of N-level systems”, J. Math. Phys. 17, 821 (1976). Crossref, Web of ScienceGoogle Scholar
    • 3. G. Lindblad , “ On the generators of quantum dynamical semigroups”, Commun. Math. Phys. 48, 119 (1976). Crossref, Web of ScienceGoogle Scholar
    • 4. D. Chruściński and S. Pascazio , “ A brief history of the GKLS Equation”, Open Sys. Information Dyn. 24, 1740001 (2017). Link, Web of ScienceGoogle Scholar
    • 5. A. Kossakowski , “ On closed-form approximations for the free energy of 3-dimensional Ising model”, Open Sys. Information Dyn. 1, 115 (1992). CrossrefGoogle Scholar
    • 6. A. Kossakowski , “ On closed-form approximations for the free energy of d-dimensional Ising model II”, Open Sys. Information Dyn. 2, 195 (1994). CrossrefGoogle Scholar
    • 7. A. Kossakowski , “ On closed-form approximations for the free energy of d-dimensional Ising model III”, Open Sys. Information Dyn. 2, 331 (1994). CrossrefGoogle Scholar
    • 8. Figure generated with a matlab program 3D ISING Andrea, MATLAB Central File Exchange, https://www.mathworks.com/ retrieved March 1, 2022. Google Scholar
    • 9. G. Kimura and A Kossakowski , “ The Bloch-vector space for N-level systems: the spherical-coordinate point of view”, Open Sys. Information Dyn. 12, 207 (2005). Link, Web of ScienceGoogle Scholar
    • 10. D. Chruściński, A Kossakowski, and G. Sarbicki , “ Spectral conditions for entanglement witnesses vs. bound entanglement”, Phys. Rev. A 80, 042314 (2009). Crossref, Web of ScienceGoogle Scholar
    • 11. D. Chruściński, A Kossakowski, K. Młodawski, and T. Matsuoka , “ A class of Bell diagonal states and entanglement witnesses”, Open Sys. Information Dyn. 17, 235 (2010). Link, Web of ScienceGoogle Scholar
    • 12. D. Chruściński and A Kossakowski , “ Non-Markovian quantum dynamics: local versus nonlocal”, Phys. Rev. Lett. 104, 070406 (2010). Crossref, Web of ScienceGoogle Scholar
    • 13. D. Chruściński, A. Kossakowski, and Á. Rivas , “ Measures of non-Markovianity: divisibility versus backflow of information”, Phys. Rev. A 83, 052128 (2011). Crossref, Web of ScienceGoogle Scholar
    • 14. D. Chruściński and A Kossakowski , “ Markovianity criteria for quantum evolution”, J. Phys. B 45, 154002 (2012). Crossref, Web of ScienceGoogle Scholar
    • 15. R.S. Ingarden, A. Kossakowski, and M. Ohya , Information Dynamics and Open Systems: Classical and Quantum Approach, Springer, 1997. CrossrefGoogle Scholar
    • 16. E. Størmer , “ Positive linear maps of operator algebras”, Acta Math. 110, 233 (1963). Crossref, Web of ScienceGoogle Scholar
    • 17. S.L. Woronowicz , “ Positive maps in low dimensional matrix algebras”, Rep. Math. Phys. 10, 165 (1976). CrossrefGoogle Scholar
    • 18. M.-D. Choi , “ Positive semidefinite biquadratic forms“, Lin. Alg. Appl. 12, 95 (1975). Crossref, Web of ScienceGoogle Scholar
    • 19. D. Chruściński and A. Kossakowski , “ Spectral Conditions for Positive Maps”, Commun. Math. Phys. 290, 1051 (2009). Crossref, Web of ScienceGoogle Scholar
    • 20. D. Chruściński and A. Kossakowski , “ Geometry of quantum states: new construction of positive maps”, Phys. Lett. A 373, 2301 (2009). Crossref, Web of ScienceGoogle Scholar
    • 21. A. Kossakowski , “ A class of linear positive maps in matrix algebras”, Open Sys. Information Dyn. 10, 1 (2003). Link, Web of ScienceGoogle Scholar