World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Electronic properties and redox chemistry of N-confused metalloporphyrins

    https://doi.org/10.1142/S1088424623500918Cited by:0 (Source: Crossref)

    Here we study the effect of metals on the characteristic Soret band of N-confused porphyrins. We used DFT calculations to study how this low-lying region of the spectrum of the NCP-2H isomer is affected by the introduction of transition metals with various (d2, d3, d4 and d6) d-electron configurations. The spin ground state of these complexes is mostly dependent on the number of unpaired electrons, both with and without the presence of an axial ligand. The analysis of the electronic distribution and spin density showed that these unpaired electrons are often harbored by the N-confused porphyrin ring instead of on the metal. Time-dependent DFT results indicated that the aromatic system of porphyrin is disrupted in the N-confused isomer: instead of the typical large Soret band, this now gives rise to two peaks of much lower intensity. Most metallo-porphyrins exhibited similar optical properties, with the HOMO/LUMO orbitals showing a mixed metal/porphyrin character. The only exception was the Rh metalloporphyrin that exhibited a ligand-to-metal charge transfer band with increasing intensity as function of the ligand field. This suggests Rh is the only metal whose orbitals are higher in energy than the ligand’s, indicating that it is the only system where the redox processes occur on the metal.

    Dedicated to Prof. Jonathan L. Sessler on the occasion of his 65th birthday

    References

    Most comprehensive & up-to-date research on PORPHYRINS
    Handbook of Porphyrin Science now available in 46 volumes