Decreasing the aggregation and ligand redox potential of metallophthalocyanines through branched ether functionalization
Abstract
The addition of ether functional groups to a metallophthalocyanine ring is known to significantly decrease the oxidation potentials of the ring. In this light, the impact of the branching of alkyl-ether groups on the electronic properties was investigated via the synthesis of non-peripheral (-substituted n-butyl (1), iso-butyl (2) and sec-butyl (3) 1,4,8,11,15,18,22,25-octabutoxyphthalocyanines, in conjunction with Co and Cu metal centers. From 1 to 3 the first and second ring-based oxidation potentials were decreased by 70 mV and 110 mV respectively both for Cu and Co-containing complexes; the UV-visible Q-band maxima only changed by 4-8 nm, consistent with the destabilization of both the HOMO and LUMO, as confirmed by TD-DFT calculations. The reversibility of both redox couples was improved via branching (3) for the Co complexes. All six complexes were structurally characterized, with varying levels and types of ring distortions. All molecules show 1-D supramolecular stacking, but for n-butoxy 1Co an intermolecular Co-O interaction aligns the molecular stacks, while for sec-butoxy 3Co only - stacking of the Pc-ring was present. Both 3Co and 3Cu were ring-oxidized at lower potentials than 1Co and 1Cu, and the increased steric bulk from the branched ether chains prevented the overlap of their N8C8 inner rings.

Dedicated to Prof. Tomás Torres on the occasion of his 70th birthday
References
- 1. ACS Catal. 2012; 2: 270–279. Crossref, Web of Science, Google Scholar
- 2. . J. Am. Chem. Soc. 2010; 132: 14358–14360. Crossref, Web of Science, Google Scholar
- 3. . Chem. Soc. Rev. 2013; 42: 1440–1459. Crossref, Web of Science, Google Scholar
- 4. Angew. Chem. Int. Ed. 2011; 50: 3356–3358. Crossref, Web of Science, Google Scholar
- 5. Coord. Chem. Rev. 2009; 253: 2342–2351. Crossref, Web of Science, Google Scholar
- 6. . Macromolecules 2014; 47: 6145–6158. Crossref, Web of Science, Google Scholar
- 7. . Chem. Asian J. 2011; 6: 1688–1704. Crossref, Web of Science, Google Scholar
- 8. . Coord. Chem. Rev. 2019; 381: 1–64. Crossref, Web of Science, Google Scholar
- 9. . Coord. Chem. Rev. 2022; 468: 214626 Crossref, Web of Science, Google Scholar
- 10. . Optical Spectra of Phthalocyanines and Related Compounds. Tokyo: Springer Japan, 2015. Crossref, Google Scholar
- 11. . In Ullmann’s Encyclopedia of Industrial Chemistry. Bohnet M, ed. Vol 26. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co., 2000; 535–568. Google Scholar
- 12. . In Phthalocyanines: Properties and Applications. Leznoff CC and Lever ABP, eds. Vol 1. New York: Wiley, 1989; 133. Google Scholar
- 13. . Org. Biomol. Chem. 2008; 6: 1877. Crossref, Web of Science, Google Scholar
- 14. . Chem. Soc. Rev. 2020; 49: 1041–1056. Crossref, Web of Science, Google Scholar
- 15. . In The Porphyrin Handbook, Kadish KM, Guilard R and Smith KM, eds. Vol 20. 1st ed. Elsevier, 2003; 1–242. Google Scholar
- 16. . J. Am. Chem Soc. 1986; 108: 7595–7608. Crossref, Web of Science, Google Scholar
- 17. . J. Am. Chem. Soc. 1980; 102: 6702–6713. Crossref, Web of Science, Google Scholar
- 18. . Dalton Trans. 2008: 5467–5483. Google Scholar
- 19. . ACS Appl. Mater. Interfaces 2021; 13: 31321–31330. Crossref, Web of Science, Google Scholar
- 20. . J. Am. Chem. Soc. 2012; 134: 4196–4206. Crossref, Web of Science, Google Scholar
- 21. . J. Am. Chem. Soc. 1980; 102: 5137–5142. Crossref, Web of Science, Google Scholar
- 22. . Angew. Chem. Int. Ed. English 2001; 40: 244–246. Crossref, Web of Science, Google Scholar
- 23. . Inorg. Chem. 2018; 57: 9644–9655. Crossref, Web of Science, Google Scholar
- 24. . Inorg. Chem. 2002; 41: 1778–1781. Crossref, Web of Science, Google Scholar
- 25. . Inorg. Chem. 2010; 49: 3343–3350. Crossref, Web of Science, Google Scholar
- 26. . J. Porphyr. Phthalocyanines 2012; 16: 154–162. Link, Web of Science, Google Scholar
- 27. . New J. Chem. 2012; 36: 48–51. Crossref, Web of Science, Google Scholar
- 28. . Inorg. Chem. 2016; 55: 1390–1402. Crossref, Web of Science, Google Scholar
- 29. . Dalton Trans. 2015; 44: 13955–13961. Crossref, Web of Science, Google Scholar
- 30. . J. Porphyr. Phthalocyanines 1999; 3: 720–728. Link, Web of Science, Google Scholar
- 31. . Polyhedron 2005; 24: 3004–3011. Crossref, Web of Science, Google Scholar
- 32. . J. Photochem. Photobiol. A. 1996; 97: 155–162. Crossref, Web of Science, Google Scholar
- 33. . Polyhedron 2007; 26: 5355–5364. Crossref, Web of Science, Google Scholar
- 34. . J. Org. Chem. 2001; 66: 6109–6115. Crossref, Web of Science, Google Scholar
- 35. . Inorg. Chem. 2003; 42: 8181–8191. Crossref, Web of Science, Google Scholar
- 36. . Inorg. Chem. 2006; 45: 2327–2334. Crossref, Web of Science, Google Scholar
- 37. . Sustain. Energy Fuels 2021; 5: 584–589. Crossref, Web of Science, Google Scholar
- 38. . Molecules 2020; 25: 213. Crossref, Web of Science, Google Scholar
- 39. . J. Photochem. Photobiol A 1996; 97: 155–162. Crossref, Web of Science, Google Scholar
- 40. . Chem. Commun. 2004: 2112–2113. Crossref, Web of Science, Google Scholar
- 41. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2012; 98: 178–182. Crossref, Web of Science, Google Scholar
- 42. . Mendeleev. Commun. 2018; 28: 275–277. Crossref, Web of Science, Google Scholar
- 43. . Inorg. Chim. Acta 1986; 112: 11–15. Crossref, Web of Science, Google Scholar
- 44. . Dalton Trans. 2018; 47: 4661–4671. Crossref, Web of Science, Google Scholar
- 45. . Inorg. Chem. 1994; 33: 573–583. Crossref, Web of Science, Google Scholar
- 46. . Chem. Commun. 2019; 55: 6696–6699. Crossref, Web of Science, Google Scholar
- 47. . J. Chem. Soc., Perkin Trans. 1 1988: 2453. Crossref, Google Scholar
- 48. . Chem. Sci. 2014; 5: 3432–3438. Crossref, Web of Science, Google Scholar
- 49. . Angew. Chem. Int. Ed. 2011; 50: 2725–2728. Crossref, Web of Science, Google Scholar
- 50. . J. Mater. Chem. C 2015; 3: 1497–1506. Crossref, Google Scholar
- 51. . Org. Lett. 2008; 10: 2885–2888. Crossref, Web of Science, Google Scholar
- 52. . Can. J. Chem. 2002; 80: 141–147. Crossref, Web of Science, Google Scholar
- 53. . Inorg. Chim. Acta 2015; 434: 24–30. Crossref, Web of Science, Google Scholar
- 54. . Talanta 2019; 201: 185–193. Crossref, Web of Science, Google Scholar
- 55. . Chem. Commun. 2015; 51: 6580–6583. Crossref, Web of Science, Google Scholar
- 56. . J. Org. Chem. 1998; 63: 331–336. Crossref, Web of Science, Google Scholar
- 57. . J. Quant. Spectrosc. Radiat. Transf. 2021; 265: 107544. Crossref, Web of Science, Google Scholar
- 58. . Adv. Mater. 1995; 7: 551–554. Crossref, Web of Science, Google Scholar
- 59. . J. Am. Chem. Soc. 1970; 92: 2982–2991. Crossref, Web of Science, Google Scholar
- 60. . Inorg. Chem. 1990; 29: 3415–3425. Crossref, Web of Science, Google Scholar
- 61. . Can. J. Chem. 1976; 54: 2514–2516. Crossref, Web of Science, Google Scholar
- 62. . Sci. Bull. 2002; 47: 3. Google Scholar
- 63. . Dalton Trans. 2018; 47: 15017–15023. Crossref, Web of Science, Google Scholar
- 64. . Eur. J. Inorg. Chem. 2021; 2021: 2773–2783. Crossref, Web of Science, Google Scholar
- 65. . Angew. Chem. Int. Ed. 2008; 47: 32. Crossref, Web of Science, Google Scholar
- 66. . J. Am. Chem. Soc. 2014; 136: 6421–6427. Crossref, Web of Science, Google Scholar
- 67. . J. Am. Chem. Soc. 2010; 132: 580–586. Crossref, Web of Science, Google Scholar
- 68. Bruker, APEX3, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA. 2016. Google Scholar
- 69. G. M. Sheldrick, TWINABS (Version 2012/1), University of Göttingen, Germany. 1996. Google Scholar
- 70. . Acta. Crystallogr. C. Struct. Chem. 2015; 71: 3–8. Crossref, Google Scholar
- 71. . J. Appl. Crystallogr. 2011; 44: 1281–1284. Crossref, Web of Science, Google Scholar
- 72. . J. Appl. Crystallogr. 2008; 41: 466–470. Crossref, Web of Science, Google Scholar
- 73. . J. Appl. Crystallogr. 2003; 36: 944–947. Crossref, Web of Science, Google Scholar
- 74. . J. Mol. Struct. THEOCHEM 1999; 461–462: 1–21. Crossref, Web of Science, Google Scholar
- 75. Gaussian 16, Revision A.03, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Stroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas Ö, Foresman JB and Fox DJ. Gaussian, Inc., Wallingford CT, 2016. Google Scholar
- 76. . Chem. Phys. Lett. 1996; 256: 454–464. Crossref, Web of Science, Google Scholar
- 77. . Chem. Rev. 2005; 105: 4009–4037. Crossref, Web of Science, Google Scholar
Handbook of Porphyrin Science now available in 46 volumes