World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Four-dimensional SO(3)-spherically symmetric Berwald Finsler spaces

    https://doi.org/10.1142/S0219887823501906Cited by:2 (Source: Crossref)

    We locally classify all SO(3)-invariant four-dimensional pseudo-Finsler Berwald structures. These are Finslerian geometries which are closest to (spatially, or SO(3))-spherically symmetric pseudo-Riemannian ones — and serve as ansatz to find solutions of Finsler gravity equations which generalize the Einstein equations. We find that there exist five classes of non-pseudo-Riemannian (i.e. non-quadratic in the velocities) SO(3)-spherically symmetric pseudo-Finsler Berwald functions, which have either a heavily constrained dependence on the velocities, or, up to a suitable choice of the tangent bundle coordinates, no dependence at all on the “time” and “radial” coordinates.

    AMSC: 83A05, 53B40, 83C99

    References

    • 1. R. M. Wald , General Relativity (The University of Chicago Press, 1984). CrossrefGoogle Scholar
    • 2. E. N. Saridakis, R. Lazkoz, V. Salzano, P. V. Moniz, S. Capozziello, J. Beltrán Jiménez, M. De Laurentis and G. J. Olmo , eds., Modified Gravity and Cosmology (Springer, 2021). CrossrefGoogle Scholar
    • 3. A. Addazi et al., Quantum gravity phenomenology at the dawn of the multi-messenger era — A review, Prog. Part. Nucl. Phys. 125 (2022) 103948. Crossref, Web of ScienceGoogle Scholar
    • 4. M. Hohmann , Metric-affine geometries with spherical symmetry, Symmetry 12(3) (2020) 453. Crossref, Web of ScienceGoogle Scholar
    • 5. L. Berwald , Untersuchung der krümmung allgemeiner metrischer räume auf grund des in ihnen herrschenden parallelismus, Math. Z. 25(1) (1926) 40–73. CrossrefGoogle Scholar
    • 6. P. Finsler, Über kurven und flächen in allgemeinen räumen, PhD thesis, Georg-August Universität zu Göttingen (1918). Google Scholar
    • 7. D. Bao, S.-S. Chern and Z. Shen , An Introduction to Finsler–Riemann Geometry (Springer, New York, 2000). CrossrefGoogle Scholar
    • 8. R. Miron and I. Bucataru , Finsler Lagrange Geometry (Editura Academiei Romane, Bucharest, 2007). Google Scholar
    • 9. N. Voicu , Conformal maps between pseudo-Finsler spaces, Int. J. Geom. Methods Mod. Phys. 15(01) (2018) 1850003. Link, Web of ScienceGoogle Scholar
    • 10. A. Fuster, S. Heefer, C. Pfeifer and N. Voicu , On the non metrizability of Berwald Finsler spacetimes, Universe 6(5) (2020) 64. Crossref, Web of ScienceGoogle Scholar
    • 11. M. Á. Javaloyes, E. Pendás-Recondo and M. Sánchez, An account on links between Finsler and Lorentz Geometries for Riemannian Geometers, preprint (2022), arXiv:2203.13391. Google Scholar
    • 12. C. Pfeifer and M. N. R. Wohlfarth , Causal structure and electrodynamics on Finsler spacetimes, Phys. Rev. D 84 (2011) 044039. Crossref, Web of ScienceGoogle Scholar
    • 13. E. Minguzzi, The connections of pseudo-Finsler spaces, Int. J. Geom. Methods Mod. Phys. 11(07) (2014) 1460025; [Erratum: Int. J. Geom. Methods Mod. Phys. 12(7) (2015) 1592001]. Google Scholar
    • 14. A. G.-P. Gómez-Lobo and E. Minguzzi , Pseudo-Finsler spaces modeled on a pseudo-Minkowski space, Rep. Math. Phys. 82 (2018) 29–42. Crossref, Web of ScienceGoogle Scholar
    • 15. E. Minguzzi , Special coordinate systems in pseudo-Finsler geometry and the equivalence principle, J. Geom. Phys. 114 (2017) 336–347. Crossref, Web of ScienceGoogle Scholar
    • 16. M. A. Javaloyes and M. Sánchez , On the definition and examples of cones and Finsler spacetimes, RACSAM 114 (2020) 30. Crossref, Web of ScienceGoogle Scholar
    • 17. N. Minculete, C. Pfeifer and N. Voicu , Inequalities from Lorentz–Finsler norms, Math. Inequalities Appl. 24(2) (2021) 373–398. Crossref, Web of ScienceGoogle Scholar
    • 18. R. K. Tavakol and N. V. den Bergh , Viability criteria for the theories of gravity and Finsler spaces, Gen. Relativ. Gravit. 18(8) (1986) 849–859. Crossref, Web of ScienceGoogle Scholar
    • 19. N. Voicu , New considerations on Hilbert action and Einstein equations in anisotropic spaces, AIP Conf. Proc. 1283 (2010) 249–257. Google Scholar
    • 20. C. Pfeifer and M. N. R. Wohlfarth , Finsler geometric extension of Einstein gravity, Phys. Rev. D 85 (2012) 064009. Crossref, Web of ScienceGoogle Scholar
    • 21. C. Lammerzahl and V. Perlick , Finsler geometry as a model for relativistic gravity, Int. J. Geom. Methods Mod. Phys. 15 (2018) 1850166. Link, Web of ScienceGoogle Scholar
    • 22. C. Pfeifer , Finsler spacetime geometry in Physics, Int. J. Geom. Methods Mod. Phys. 16(supp02) (2019) 1941004. Link, Web of ScienceGoogle Scholar
    • 23. M. Hohmann, C. Pfeifer and N. Voicu , Finsler gravity action from variational completion, Phys. Rev. D 100(6) (2019) 064035. Crossref, Web of ScienceGoogle Scholar
    • 24. M. Hohmann, C. Pfeifer and N. Voicu , Relativistic kinetic gases as direct sources of gravity, Phys. Rev. D 101(2) (2020) 024062. Crossref, Web of ScienceGoogle Scholar
    • 25. I. P. Lobo and C. Pfeifer , Reaching the Planck scale with muon lifetime measurements, Phys. Rev. D 103(10) (2021) 106025. Crossref, Web of ScienceGoogle Scholar
    • 26. E. Kapsabelis, P. G. Kevrekidis, P. C. Stavrinos and A. Triantafyllopoulos, Schwarzschild–Finsler–Randers spacetime: Dynamical analysis, Geodesics and Deflection Angle, preprint (2022), arXiv:2208.05063. Google Scholar
    • 27. P. Carvalho, C. Landri, R. Mistry and A. Pinzul , Multimetric Finsler geometry, Int. J. Mod. Phys. A 38 (2022) 2350018. Link, Web of ScienceGoogle Scholar
    • 28. A. Garcia-Parrado and E. Minguzzi , An anisotropic gravity theory, Gen. Relativ. Gravit. 54 (2022) 150. Crossref, Web of ScienceGoogle Scholar
    • 29. J. Zhu and B.-Q. Ma , Lorentz-violation-induced arrival time delay of astroparticles in Finsler spacetime, Phys. Rev. D 105(12) (2022) 124069. CrossrefGoogle Scholar
    • 30. A. B. Aazami, M. Á. Javaloyes and M. C. Werner , Finsler pp-waves and the Penrose limit, Gen. Relativ. Gravit. 55 (2023) 52. Crossref, Web of ScienceGoogle Scholar
    • 31. M. Á. Javaloyes, M. Sánchez and F. F. Villaseñor , On the significance of the stress–energy tensor in Finsler spacetimes, Universe 8(2) (2022) 93. Crossref, Web of ScienceGoogle Scholar
    • 32. M. Hohmann, C. Pfeifer and N. Voicu , Cosmological Finsler spacetimes, Universe 6(5) (2020) 65. Crossref, Web of ScienceGoogle Scholar
    • 33. R. G. Torromé , On singular generalized Berwald spacetimes and the equivalence principle, Int. J. Geom. Meth. Mod. Phys. 14(6) (2017) 1750091. Link, Web of ScienceGoogle Scholar
    • 34. S. G. Elgendi , On the classification of Landsberg spherically symmetric Finsler metrics, Int. J. Geom. Methods Mod. Phys. 18(14) (2021) 2150232. Link, Web of ScienceGoogle Scholar
    • 35. M. Hohmann, C. Pfeifer and N. Voicu , Finsler gravity action from variational completion, Phys. Rev. D 100(6) (2019) 064035. Crossref, Web of ScienceGoogle Scholar
    • 36. M. Hohmann, C. Pfeifer and N. Voicu , The kinetic gas universe, Eur. Phys. J. C 80(9) (2020) 809. Crossref, Web of ScienceGoogle Scholar
    • 37. S. G. Elgendi , Solutions for the landsberg unicorn problem in finsler geometry, J. Geom. Phys. 159 (2021) 103918. Crossref, Web of ScienceGoogle Scholar
    • 38. Z. Muzsnay , The Euler-Lagrange PDE and finsler metrizability, Houst. J. Math. 32(1) (2019) 79–98. Google Scholar
    • 39. I. Bucataru and Z. Muzsnay , Projective metrizability and formal integrability, Symmetry Integrability Geom. Methods Appl. 7 (2011) 114. Web of ScienceGoogle Scholar
    • 40. J. K. Beem , Indefinite Finsler spaces and timelike spaces, Can. J. Math. 22 (1970) 1035. Crossref, Web of ScienceGoogle Scholar
    • 41. M. Hohmann, C. Pfeifer and N. Voicu , Mathematical foundations for field theories on Finsler spacetimes, J. Math. Phys. 63(3) (2022) 032503. Crossref, Web of ScienceGoogle Scholar
    • 42. C. Pfeifer, S. Heefer and A. Fuster , Identifying Berwald Finsler geometries, Differ. Geom. Appl. 79 (2021) 101817. Crossref, Web of ScienceGoogle Scholar
    • 43. H. R. F. A. Bejancu , Geometry of Pseudo-Finsler Submanifolds (Springer, Dodrecht, 2000). CrossrefGoogle Scholar
    • 44. J. Szilasi, R. L. Lovas and D. Cs. Kertesz , Several ways to Berwald manifolds — and some steps beyond, Extracta Math. 26 (2011) 89–130. Google Scholar
    • 45. Z. Szabó , Positive definite berwald spaces, Tensor (N.S.) 35 (1981) 25–39. Google Scholar
    • 46. D. Krupka and J. Brajercík , Schwarzschild spacetimes: Topology, Axioms 11(12) (2022) 693. Crossref, Web of ScienceGoogle Scholar
    • 47. M. Hohmann and C. Pfeifer , Geodesics and the magnitude-redshift relation on cosmologically symmetric Finsler spacetimes, Phys. Rev. D 95(10) (2017) 104021. Crossref, Web of ScienceGoogle Scholar
    • 48. M. Á. Javaloyes, M. Sánchez and F. F. Villaseñor, The Einstein-Hilbert-Palatini formalism in Pseudo-Finsler geometry, preprint (2021), arXiv:2108.03197. Google Scholar
    Remember to check out the Most Cited Articles!

    Check out new Mathematical Physics books in our Mathematics 2021 catalogue
    Featuring authors Bang-Yen Chen, John Baez, Matilde Marcolli and more!