Four-dimensional -spherically symmetric Berwald Finsler spaces
Abstract
We locally classify all -invariant four-dimensional pseudo-Finsler Berwald structures. These are Finslerian geometries which are closest to (spatially, or )-spherically symmetric pseudo-Riemannian ones — and serve as ansatz to find solutions of Finsler gravity equations which generalize the Einstein equations. We find that there exist five classes of non-pseudo-Riemannian (i.e. non-quadratic in the velocities) -spherically symmetric pseudo-Finsler Berwald functions, which have either a heavily constrained dependence on the velocities, or, up to a suitable choice of the tangent bundle coordinates, no dependence at all on the “time” and “radial” coordinates.
References
- 1. , General Relativity (The University of Chicago Press, 1984). Crossref, Google Scholar
- 2. E. N. Saridakis, R. Lazkoz, V. Salzano, P. V. Moniz, S. Capozziello, J. Beltrán Jiménez, M. De Laurentis and G. J. Olmo , eds., Modified Gravity and Cosmology (Springer, 2021). Crossref, Google Scholar
- 3. , Quantum gravity phenomenology at the dawn of the multi-messenger era — A review, Prog. Part. Nucl. Phys. 125 (2022) 103948. Crossref, Web of Science, Google Scholar
- 4. , Metric-affine geometries with spherical symmetry, Symmetry 12(3) (2020) 453. Crossref, Web of Science, Google Scholar
- 5. , Untersuchung der krümmung allgemeiner metrischer räume auf grund des in ihnen herrschenden parallelismus, Math. Z. 25(1) (1926) 40–73. Crossref, Google Scholar
- 6. P. Finsler, Über kurven und flächen in allgemeinen räumen, PhD thesis, Georg-August Universität zu Göttingen (1918). Google Scholar
- 7. , An Introduction to Finsler–Riemann Geometry (Springer, New York, 2000). Crossref, Google Scholar
- 8. , Finsler Lagrange Geometry (Editura Academiei Romane, Bucharest, 2007). Google Scholar
- 9. , Conformal maps between pseudo-Finsler spaces, Int. J. Geom. Methods Mod. Phys. 15(01) (2018) 1850003. Link, Web of Science, Google Scholar
- 10. , On the non metrizability of Berwald Finsler spacetimes, Universe 6(5) (2020) 64. Crossref, Web of Science, Google Scholar
- 11. M. Á. Javaloyes, E. Pendás-Recondo and M. Sánchez, An account on links between Finsler and Lorentz Geometries for Riemannian Geometers, preprint (2022), arXiv:2203.13391. Google Scholar
- 12. , Causal structure and electrodynamics on Finsler spacetimes, Phys. Rev. D 84 (2011) 044039. Crossref, Web of Science, Google Scholar
- 13. E. Minguzzi, The connections of pseudo-Finsler spaces, Int. J. Geom. Methods Mod. Phys. 11(07) (2014) 1460025; [Erratum: Int. J. Geom. Methods Mod. Phys. 12(7) (2015) 1592001]. Google Scholar
- 14. , Pseudo-Finsler spaces modeled on a pseudo-Minkowski space, Rep. Math. Phys. 82 (2018) 29–42. Crossref, Web of Science, Google Scholar
- 15. , Special coordinate systems in pseudo-Finsler geometry and the equivalence principle, J. Geom. Phys. 114 (2017) 336–347. Crossref, Web of Science, Google Scholar
- 16. , On the definition and examples of cones and Finsler spacetimes, RACSAM 114 (2020) 30. Crossref, Web of Science, Google Scholar
- 17. , Inequalities from Lorentz–Finsler norms, Math. Inequalities Appl. 24(2) (2021) 373–398. Crossref, Web of Science, Google Scholar
- 18. , Viability criteria for the theories of gravity and Finsler spaces, Gen. Relativ. Gravit. 18(8) (1986) 849–859. Crossref, Web of Science, Google Scholar
- 19. , New considerations on Hilbert action and Einstein equations in anisotropic spaces, AIP Conf. Proc. 1283 (2010) 249–257. Google Scholar
- 20. , Finsler geometric extension of Einstein gravity, Phys. Rev. D 85 (2012) 064009. Crossref, Web of Science, Google Scholar
- 21. , Finsler geometry as a model for relativistic gravity, Int. J. Geom. Methods Mod. Phys. 15 (2018) 1850166. Link, Web of Science, Google Scholar
- 22. , Finsler spacetime geometry in Physics, Int. J. Geom. Methods Mod. Phys. 16(supp02) (2019) 1941004. Link, Web of Science, Google Scholar
- 23. , Finsler gravity action from variational completion, Phys. Rev. D 100(6) (2019) 064035. Crossref, Web of Science, Google Scholar
- 24. , Relativistic kinetic gases as direct sources of gravity, Phys. Rev. D 101(2) (2020) 024062. Crossref, Web of Science, Google Scholar
- 25. , Reaching the Planck scale with muon lifetime measurements, Phys. Rev. D 103(10) (2021) 106025. Crossref, Web of Science, Google Scholar
- 26. E. Kapsabelis, P. G. Kevrekidis, P. C. Stavrinos and A. Triantafyllopoulos, Schwarzschild–Finsler–Randers spacetime: Dynamical analysis, Geodesics and Deflection Angle, preprint (2022), arXiv:2208.05063. Google Scholar
- 27. , Multimetric Finsler geometry, Int. J. Mod. Phys. A 38 (2022) 2350018. Link, Web of Science, Google Scholar
- 28. , An anisotropic gravity theory, Gen. Relativ. Gravit. 54 (2022) 150. Crossref, Web of Science, Google Scholar
- 29. , Lorentz-violation-induced arrival time delay of astroparticles in Finsler spacetime, Phys. Rev. D 105(12) (2022) 124069. Crossref, Google Scholar
- 30. , Finsler pp-waves and the Penrose limit, Gen. Relativ. Gravit. 55 (2023) 52. Crossref, Web of Science, Google Scholar
- 31. , On the significance of the stress–energy tensor in Finsler spacetimes, Universe 8(2) (2022) 93. Crossref, Web of Science, Google Scholar
- 32. , Cosmological Finsler spacetimes, Universe 6(5) (2020) 65. Crossref, Web of Science, Google Scholar
- 33. , On singular generalized Berwald spacetimes and the equivalence principle, Int. J. Geom. Meth. Mod. Phys. 14(6) (2017) 1750091. Link, Web of Science, Google Scholar
- 34. , On the classification of Landsberg spherically symmetric Finsler metrics, Int. J. Geom. Methods Mod. Phys. 18(14) (2021) 2150232. Link, Web of Science, Google Scholar
- 35. , Finsler gravity action from variational completion, Phys. Rev. D 100(6) (2019) 064035. Crossref, Web of Science, Google Scholar
- 36. , The kinetic gas universe, Eur. Phys. J. C 80(9) (2020) 809. Crossref, Web of Science, Google Scholar
- 37. , Solutions for the landsberg unicorn problem in finsler geometry, J. Geom. Phys. 159 (2021) 103918. Crossref, Web of Science, Google Scholar
- 38. , The Euler-Lagrange PDE and finsler metrizability, Houst. J. Math. 32(1) (2019) 79–98. Google Scholar
- 39. , Projective metrizability and formal integrability, Symmetry Integrability Geom. Methods Appl. 7 (2011) 114. Web of Science, Google Scholar
- 40. , Indefinite Finsler spaces and timelike spaces, Can. J. Math. 22 (1970) 1035. Crossref, Web of Science, Google Scholar
- 41. , Mathematical foundations for field theories on Finsler spacetimes, J. Math. Phys. 63(3) (2022) 032503. Crossref, Web of Science, Google Scholar
- 42. , Identifying Berwald Finsler geometries, Differ. Geom. Appl. 79 (2021) 101817. Crossref, Web of Science, Google Scholar
- 43. , Geometry of Pseudo-Finsler Submanifolds (Springer, Dodrecht, 2000). Crossref, Google Scholar
- 44. , Several ways to Berwald manifolds — and some steps beyond, Extracta Math. 26 (2011) 89–130. Google Scholar
- 45. , Positive definite berwald spaces, Tensor (N.S.) 35 (1981) 25–39. Google Scholar
- 46. , Schwarzschild spacetimes: Topology, Axioms 11(12) (2022) 693. Crossref, Web of Science, Google Scholar
- 47. , Geodesics and the magnitude-redshift relation on cosmologically symmetric Finsler spacetimes, Phys. Rev. D 95(10) (2017) 104021. Crossref, Web of Science, Google Scholar
- 48. M. Á. Javaloyes, M. Sánchez and F. F. Villaseñor, The Einstein-Hilbert-Palatini formalism in Pseudo-Finsler geometry, preprint (2021), arXiv:2108.03197. Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out new Mathematical Physics books in our Mathematics 2021 catalogue |