World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Exact wormholes solutions without exotic matter in f(R,T) gravity

    https://doi.org/10.1142/S0219887819500464Cited by:22 (Source: Crossref)

    This paper is aimed to evaluate the existence of wormholes in viable f(R,T) gravity models (where R is the scalar curvature and T is the trace of stress–energy tensor of matter). The exact solutions for energy–momentum tensor components depending on different shapes and redshift functions are calculated without some additional constraints. To investigate this, we consider static spherically symmetric geometry with matter contents as anisotropic fluid and formulate the Einstein field equations for three different f(R,T) models. For each model, we derive expression for weak and null energy conditions and graphically analyzed its violation near the throat. It is really interesting that wormhole solutions do not require the presence of exotic matter — like that in general relativity. Finally, the stability of the solutions for each model is presented using equilibrium condition.

    References

    • 1. M. S. Morris and K. S. Thorne , Am. J. Phys. 56 (1988) 395. Web of ScienceGoogle Scholar
    • 2. L. Flamm , Phys. Z. 448 (1916) 17. Google Scholar
    • 3. A. Einstein and N. Rosen , Phys. Rev. 48 (1935) 73. Google Scholar
    • 4. R. R. Caldwell , Phys. Lett. B 545 (2002) 23. Web of ScienceGoogle Scholar
    • 5. S. Perlmutter et al., Astrophys. J. 517 (1999) 565; A. G. Riess et al., Astron. J. 116 (1998) 1009; D. N. Spergel et al., Astrophys. J. 148 (2003) 175; 170 (2007) 377; E. J. Copeland et al., Int. J. Mod. Phys. D 15 (2006) 1753. Google Scholar
    • 6. V. Faraoni and W. Israel , Phys. Rev. D 71 (2005) 064017. Web of ScienceGoogle Scholar
    • 7. P. K. F. Kuhfittig , Sch. Res. Exch. 2008 (2008) 296158. Google Scholar
    • 8. P. K. F. Kuhfittig , Am. J. Phys. 67 (1999) 125. Web of ScienceGoogle Scholar
    • 9. M. Jamil, Int. J. Theor. Phys. 49 (2010) 1549; Nuovo Cimento B 123 (2008) 599; M. Jamil, M. U. Farooq and M. A. Rashid, Eur. Phys. J. C 59 (2009) 907; M. Jamil, P. K. F. Kuhfittig, F. Rahaman and S. A. Rakib, Eur. Phys. J. C 67 (2010) 513; M. Jamil and M. U. Farooq, Int. J. Theor. Phys. 49 (2010) 835. Google Scholar
    • 10. A. De Felice and S. Tsujikawa, Living Rev. Relativ. 13 (2010) 3; S. Nojiri and S. Odintsov, Int. J. Geom. Methods Mod. Phys. 04 (2007) 115; Phys. Rep. 505 (2011) 59; I. De Martino, M. De Laurentis and S. Capozziello, Universe 1 (2015) 123; K. Bamba, S. Capozziello, S. Nojiri and S. Odintsov, Astrophys. Space Sci. 342 (2012) 155; S. Capozziello and M. De Laurentis, Phys. Rep. 509 (2011) 167. Google Scholar
    • 11. F. Rahaman, A. Banerjee, M. Jamil, A. K. Yadav and H. Idris, Int. J. Theor. Phys. 53 (2014) 1910; M. Jamil, F. Rahaman, R. Myrzakulov, P. K. F. Kuhfittig, N. Ahmed and U. F. Mondal, J. Korean Phys. Soc. 65 (2014) 917. Google Scholar
    • 12. P. Pavlovic and M. Sossich , Eur. Phys. J. C 75 (2015) 117. Web of ScienceGoogle Scholar
    • 13. R. Myrzakulov, L. Sebastiani, S. Vagnozzi and S. Zerbini , Class. Quantum Gravit. 33 (2016) 125005. Web of ScienceGoogle Scholar
    • 14. M. Zubair, S. Waheed and Y. Ahmad , Eur. Phys. J. C 76 (2016) 444. Web of ScienceGoogle Scholar
    • 15. M. Zubair, G. Mustafa, S. Waheed and G. Abbas , Eur. Phys. J. C 77 (2016) 680. Web of ScienceGoogle Scholar
    • 16. P. H. R. S. Moraes and P. K. Sahoo, Eur. Phys. J. C 77 (2017) 480; P. H. R. S. Moraes, R. A. C. Correa and R. V. Lobato, J. Cosmol. Astropart. Phys. 7 (2017) 029; P. H. R. S. Moraes and P. K. Sahoo, Phys. Rev. D 96(4) (2017) 044038, doi:10.1103/PhysRevD.96.044038. Google Scholar
    • 17. C. G. Boehmer, T. Harko and F. S. N. Lobo, Phys. Rev. D 85 (2012) 044033; M. Jamil, D. Momeni and R. Myrzakulov, Eur. Phys. J. C 73 (2013) 2267. Google Scholar
    • 18. Z. Amirabi, M. Halilsoy and S. H. Mazharimousavi , Phys. Rev. D 88 (2013) 124023. Web of ScienceGoogle Scholar
    • 19. D. W. Tian, arXiv:1508.02291. Google Scholar
    • 20. E. Ayon-Beato, F. Canfora and J. Zanelli , Phys. Lett. B 752 (2016) 201. Web of ScienceGoogle Scholar
    • 21. L. A. Anchordoqui, D. F. Torres, M. L. Trobo and S. E. P. Bergliaffa, Phys. Rev. D 57 (1998) 829; S. W. Kim, Phys. Rev. D 53 (1996) 6889; M. Cataldo, S. del Campo, P. Minning and P. Salgado, Phys. Rev. D 79 (2009) 024005; M. Cataldo and S. del Campo, Phys. Rev. D 85 (2012) 104010; M. Cataldo, P. Meza and P. Minning, Phys. Rev. D 83 (2011) 044050; M. Cataldo, F. Aróstica and S. Bahamonde, Eur. Phys. J. C 73 (2013) 2517; Phys. Rev. D 88 (2013) 047502; U. Debnath, M. Jamil, R. Myrzakulov and M. Akbar, Int. J. Theor. Phys. 53 (2014) 4083. Google Scholar
    • 22. E. Teo, Phys. Rev. D 58 (1998) 024014; P. K. F. Kuhfittig, Phys. Rev. D 67 (2003) 064015. Google Scholar
    • 23. D. Hochbergand and M. Visser , Phys. Rev. Lett. 81 (1998) 746. Web of ScienceGoogle Scholar
    • 24. H. Saeidi and B. N. Esfahani , Mod. Phys. Lett. A 26 (2011) 1211. Link, Web of ScienceGoogle Scholar
    • 25. S. W. Kim and H. Lee, Phys. Rev. D 63 (2001) 064014; M. Jamil and M. U. Farooq, Int. J. Theor. Phys. 49 (2010) 835; F. Rahaman and S. Islam, P. K. F. Kuhfittig and S. Ray, Phys. Rev. D 86 (2012) 106010; F. S. N. Lobo, F. Parsaei and N. Riazi, Phys. Rev. D 87 (2013) 084030; F. Rahaman et al., Int. J. Theor. Phys. 53 (2014) 1910; M. Jamil et al., J. Korean Phys. Soc. 65 (2014) 917; M. Zubair, F. Kousar and S. Bahamonde, arXiv:1712.05699. Google Scholar
    • 26. P. K. F. Khufittig , Eur. Phys. J. C 74 (2014) 2818. Web of ScienceGoogle Scholar
    • 27. P. Kanti, B. Kleihaus and J. Kunz, Phys. Rev. Lett. 107 (2011) 271101; Phys. Rev. D 85 (2012) 044007. Google Scholar
    • 28. S. A. Hayward, Phys. Rev. D 79 (2009) 124001; P. M. Moruno and P. F. G. Diaz, Phys. Rev. D 80 (2009) 024007. Google Scholar
    • 29. T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82 (2010) 451; S. Nojiri and S. D. Odintsov, Int. J. Geom. Methods Mod. Phys. 4 (2007) 115. Google Scholar
    • 30. T. Harko, F. S. N. Lobo, S. Nojiri and S. D. Odintsov, Phys. Rev. D 84 (2011) 024020; M. Zubair, H. Azmat and I. Noureen, Int. J. Mod. Phys. D 27(4) (2018) 1850047; H. Azmat, M. Zubair and I. Noureen, Int. J. Mod. Phys. D 27(1) (2018) 1750181; M. Zubair and F. Kousar, Can. J. Phys. 95(11) (2017) 1074; M. Zubair, H. Azmat and I. Noureen, Eur. Phys. J. C 77(3) (2017) 169; M. Zubair, I. H. Sardar, F. Rahaman and G. Abbas, Astrophys. Space Sci. 361(7) (2016) 238; M. Zubair and S. M. Ali Hassan, Astrophys. Space Sci. 361(4) (2016) 149. Google Scholar
    • 31. B. F. Schutz, Phys. Rev. D 2 (1970) 2762; J. D. Brown, Class. Quantum Gravit. 10 (1993) 1579. Google Scholar
    • 32. V. Miranda and S. J. I. Waga , Phys. Rev. Lett. 102 (2009) 221101. Web of ScienceGoogle Scholar
    • 33. L. G. Jaime, L. Patino and M. Salgado, arXiv:1206.1642. Google Scholar
    • 34. A. A. Starobinsky, JETP Lett. 86 (2007) 157; L. Amendola and S. Tsujikawa, Phys. Lett. B 660 (2008) 125; S. Tsujikawa, Phys. Rev. D 77 (2008) 023507; L. Amendola, D. Polarski and S. Tsujikawa, Phys. Rev. Lett. 98 (2007) 131302. Google Scholar
    • 35. C. Cognola et al., Phys. Rev. D 77 (2008) 046009; E. Elizalde et al., Phys. Rev. D 83 (2011) 086006. Google Scholar
    • 36. A. D. Felice and S. Tsujikawa , Living Rev. Rel. 13 (2010) 3. Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out new Mathematical Physics books in our Mathematics 2021 catalogue
    Featuring authors Bang-Yen Chen, John Baez, Matilde Marcolli and more!