World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

On the theory and applications of modern cosmography

    https://doi.org/10.1142/S0219887816300026Cited by:116 (Source: Crossref)

    Cosmography represents an important branch of cosmology which aims to describe the universe without the need of postulating a priori any particular cosmological model. All quantities of interest are expanded as a Taylor series around here and now, providing in principle, a way of directly matching with cosmological data. In this way, cosmography can be regarded a model-independent technique, able to fix cosmic bounds, although several issues limit its use in various model reconstructions. The main purpose of this review is to focus on the key features of cosmography, emphasizing both the strategy for obtaining the observable cosmographic series and pointing out any drawbacks which might plague the standard cosmographic treatment. In doing so, we relate cosmography to the most relevant cosmological quantities and to several dark energy models. We also investigate whether cosmography is able to provide information about the form of the cosmological expansion history, discussing how to reproduce the dark fluid from the cosmographic sound speed. Following this, we discuss limits on cosmographic priors and focus on how to experimentally treat cosmographic expansions. Finally, we present some of the latest developments of the cosmographic method, reviewing the use of rational approximations, based on cosmographic Padé polynomials. Future prospects leading to more accurate cosmographic results, able to better reproduce the expansion history of the universe, are also discussed in detail.

    AMSC: 83F01, 85–08, 65Z05

    References

    • 1. A. G. Riess et al., Astron. J. 116 (1998) 1009–1038; J. L. Tonry et al., Astrophys. J. 594 (2003) 1–24; A. G. Riess et al., Astrophys. J. 607 (2004) 665–687. Google Scholar
    • 2. S. Perlmutter et al., Astrophys. J. 517 (1999) 565–586; N. A. Bahcall, J. P. Ostriker, S. Perlmutter and P. J. Steinhardt, Science 284 (1999) 1481–1488; R. A. Knop et al., Astrophys. J. 598 (2003) 102. Google Scholar
    • 3. M. Li, X. D. Li, S. Wang and Y. Wang, Front. Phys. 8 (2013) 828–846; V. Sahni, Lect. Notes Phys. 653 (2004) 141–179. Google Scholar
    • 4. J. E. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15 (2006) 1753–1936; V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. D 15 (2006) 2105–2132. Google Scholar
    • 5. S. Capozziello and M. De Laurentis, Phys. Rep. 509 (2011) 167–321; S. Capozziello, M. De Laurentis and V. Faraoni, Open Astron. J. 3 (2010) 49. Google Scholar
    • 6. O. Luongo and H. Quevedo, Self-accelerated universe induced by repulsive effects as an alternative to dark energy and modified gravities, arXiv [gr-qc]: 1507.06446 (2015); O. Luongo and H. Quevedo, Toward an invariant definition of repulsive gravity, Proc. MG XII, Paris, doi: 10.1142/97898143745520122, arXiv [gr-qc]: 1005.4532 (2010). Google Scholar
    • 7. T. Padmanabhan, AIP Conf. Proc. 861 (2006) 179–196; J. L. Cervantes-Cota and G. Smoot, AIP Conf. Proc. 1396 (2011) 28–52; E. V. Linder and R. J. Scherrer, Phys. Rev. D 80 (2009) 023008. Google Scholar
    • 8. S. Weinberg, Rev. Mod. Phys. 61 (1989) 1; T. Padmanabhan, Phys. Rep. 380 (2003) 235–320. Google Scholar
    • 9. O. Luongo and H. Quevedo, Int. J. Mod. Phys. D 23 (2014) 1450012. Link, Web of ScienceGoogle Scholar
    • 10. M. Kunz, Phys. Rev. D 80 (2009) 123001. Crossref, Web of ScienceGoogle Scholar
    • 11. S. D. P. Vitenti and M. Penna-Lima, J. Cosmol. Astropart. Phys. 9 (2015) 045. Crossref, Web of ScienceGoogle Scholar
    • 12. P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75 (2003) 559–606. Crossref, Web of ScienceGoogle Scholar
    • 13. S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, Hoboken, NJ, USA, 1972); M. Visser, Phys. Rev. D 56 (1997) 7578; M. Visser, Science 276 (1997) 88. Google Scholar
    • 14. E. R. Harrison, Nature 260 (1976) 591; V. Sahni, T. D. Saini, A. A. Starobinsky and U. Alam, JETP Lett. 77 (2003) 201–206; Pisma Zh. Eksp. Teor. Fiz. 77 (2003) 249–253. Google Scholar
    • 15. M. Visser, Gen. Relativ. Gravit. 37 (2005) 1541–1548. Crossref, Web of ScienceGoogle Scholar
    • 16. K. Lake, Phys. Rev. D 76 (2007) 063508. Crossref, Web of ScienceGoogle Scholar
    • 17. C. Cattoen and M. Visser, Class. Quantum Grav. 25 (2008) 165013; C. Cattoen, Class. Quantum Grav. 24 (2007) 5985–5998. Google Scholar
    • 18. J. L. Cervantes-Cota and J. Klapp, Springer Ser. Title 7487 (2014) 71–105; K. Bamba, S. Capozziello, S. Nojiri and S. D. Odintsov, Astrophys. Space Sci. 342 (2012) 155–228. Google Scholar
    • 19. M. Visser, Class. Quantum Grav. 32(13) (2015) 135007. Crossref, Web of ScienceGoogle Scholar
    • 20. P. A. R. Ade et al., [Planck Collaboration], Astron. Astrophys. A 16 (2014) 571. Google Scholar
    • 21. A. C. C. Guimares, J. V. Cunha and J. A. S. Lima, J. Cosmol. Astropart. Phys. 0910 (2009) 010; M. Visser and C. Cattoen, Proc. DARK 2009, The Seventh Int. Heidelberg Conf. Dark Matter, Astro and Particle Physics, Christchurch, New Zealand (2009); R. Cai and Z. Tuo, Phys. Lett. B 706 (2011) 116–122. Google Scholar
    • 22. A. R. Neben and M. S. Turner, Astrophys. J. 769 (2013) 133. Crossref, Web of ScienceGoogle Scholar
    • 23. M. Scrimgeour et al., Mon. Not. R. Astron. Soc. 425 (2012) 116; E. Caztanaga, A. Cabre and L. Hui, Mon. Not. R. Astron. Soc. 399 (2009) 1663. Google Scholar
    • 24. O. Luongo, Mod. Phys. Lett. A 26 (2011) 1459–1466. Link, Web of ScienceGoogle Scholar
    • 25. L. Xu and Y. Wang, Phys. Lett. B 702 (2011) 114–120. Crossref, Web of ScienceGoogle Scholar
    • 26. A. Aviles, C. Gruber, O. Luongo and H. Quevedo, Phys. Rev. D 86 (2012) 123516. Crossref, Web of ScienceGoogle Scholar
    • 27. O. Luongo and H. Quevedo, Astroph. Sp. Sci. 338(2) (2012) 345–349. Crossref, Web of ScienceGoogle Scholar
    • 28. S. Capozziello, M. De Laurentis, O. Luongo and A. C. Ruggeri, Galaxies 1 (2013) 216–260. CrossrefGoogle Scholar
    • 29. C. Cattoen and M. Visser, arXiv:0703122. Google Scholar
    • 30. C. Cattoen and M. Visser, Class. Quantum. Grav. 22 (2005) 4913–4930. Crossref, Web of ScienceGoogle Scholar
    • 31. S. Weinberg, Cosmology (Oxford University. Press, Oxford, 2008). CrossrefGoogle Scholar
    • 32. S. Capozziello, M. De Laurentis and O. Luongo, Ann. Phys. 526 (2014) 309–317. Crossref, Web of ScienceGoogle Scholar
    • 33. R. Nair, S. Jhingan and D. Jain, J. Cosmol. Astropart. Phys. 1105 (2011) 023; B. A. Bassett and M. Kunz, Phys. Rev. D 69 (2004) 101305. Google Scholar
    • 34. I. M. H. Etherington, Gen. Relativ. Gravit. 39 (2007) 1055; R. Kristian and R. K. Sachs, Astrophys. J. 143 (1966) 379. Google Scholar
    • 35. R. F. L. Holanda, J. A. S. Lima and M. B. Ribeiro, Astron. Astrophys. 528 (2011) L14; F. De Bernardis, E. Giusarma and A. Melchiorri, Int. J. Mod. Phys. D 15 (2006) 759. Google Scholar
    • 36. G. F. R. Ellis, Gen. Relativ. Gravit. 39 (2007) 1047. Crossref, Web of ScienceGoogle Scholar
    • 37. S. Carroll, Spacetime and Geometry (Addison-Wesley, Pearson, 2004). Google Scholar
    • 38. M. P. Lima, S. D. P. Vitenti and M. J. Reboucas, Phys. Rev. D 77 (2008) 083518; Phys. Lett. B 83 (2008) 668. Google Scholar
    • 39. S. DeDeo, R. R. Caldwell and P. J. Steinhardt, Phys. Rev. D 67 (2003) 103509; R. Bean and O. Dore, Phys. Rev. D 69 (2004) 083503; J. Weller and A. M. Lewis, Mon. Not. R. Astron. Soc. 346 (2003) 987–993; S. Hannestad, Phys. Rev. D 71 (2005) 103519; P. S. Corasaniti, T. Giannantonio and A. Melchiorri, Phys. Rev. D 71 (2005) 123521; J. Q. Xia, Y. F. Cai, T. T. Qiu, G. B. Zhao and X. Zhang, Int. J. Mod. Phys. D 17 (2008) 1229–1243; D. F. Mota, J. R. Kristiansen, T. Koivisto and N. E. Groeneboom, Mon. Not. R. Astron. Soc. 382 (2007) 793–800; R. de Putter, D. Huterer and E. V. Linder, Phys. Rev. D 81 (2010) 103513; H. Li and J. Q. Xia, J. Cosmol. Astropart. Phys. 1004 (2010) 026. Google Scholar
    • 40. G. Ellis, R. Maartens and M. MacCallum, Gen. Relativ. Gravit. 39 (2007) 1651. Crossref, Web of ScienceGoogle Scholar
    • 41. J. Barranco, A. Bernal and D. Nunez, Mon. Not. R. Astron. Soc. 449(1) (2015) 403–413. Crossref, Web of ScienceGoogle Scholar
    • 42. L. Xu, Phys. Rev. D 87 (2013) 043503; L. Xu, Y. Wang and H. Noh, Phys. Rev. D 85 (2012) 043003; A. Arbey, AIP Conf. Proc. 1241 (2010) 700–707. Google Scholar
    • 43. W. Hu and D. J. Eisenstein, Phys. Rev. D 59 (1999) 083509. Crossref, Web of ScienceGoogle Scholar
    • 44. M. Nouri-Zonoz, J. Koohbor and H. Ramezani-Aval, Phys. Rev. D 91 (2015) 063010; W. Yang, L. Xu, Y. Wang and Y. Wu, Phys. Rev. D 89 (2014) 043511; M. Kunz, A. R. Liddle, D. Parkinson and C. Gao, Phys. Rev. D 80 (2009) 083533; J. L. Cervantes-Cota, A. Aviles and J. De-Santiago, AIP Conf. Proc. 1548 (2013) 299–313. Google Scholar
    • 45. N. Bilic, G. B. Tupper and R. D. Viollier, Phys. Lett. B 535 (2002) 17–21; A. Aviles, A. Bastarrachea-Almodovar, L. Campuzano and H. Quevedo, Phys. Rev. D 86 (2012) 063508. Google Scholar
    • 46. S. Nojiri and S. D. Odintsov, Phys. Lett. B 649 (2007) 440–444; A. Arbey, Phys. Rev. D 74 (2006) 043516. Google Scholar
    • 47. A. Aviles and J. L. Cervantes-Cota, Phys. Rev. D 84 (2011) 083515. Crossref, Web of ScienceGoogle Scholar
    • 48. T. Padmanabhan, Rep. Prog. Phys. 73 (2010) 046901; D. Kothawala, S. Sarkar and T. Padmanabhan, Phys. Lett. B 652 (2007) 338–342. Google Scholar
    • 49. A. Krasinski, H. Quevedo and R. Sussman, J. Math. Phys. 38 (1997) 2602. Crossref, Web of ScienceGoogle Scholar
    • 50. A. Aviles, N. Cruz, J. Klapp and O. Luongo, Gen. Relativ. Gravit. 47(5) (2015) 63. Crossref, Web of ScienceGoogle Scholar
    • 51. C. Rubano and P. Scudellaro, Gen. Relativ. Gravit. 34 (2002) 1931–1939. Crossref, Web of ScienceGoogle Scholar
    • 52. N. R. Draper and H. Smith, Applied Regression Analysis (Wiley, New York, 1998); P. Bevington et al., Data Reduction and Error Analysis for the Physical Sciences (McGraw-Hill), 2002). Google Scholar
    • 53. I. Wasserman, Phys. Rev. D 66 (2002) 123511; J. L. Crooks, J. O. Dunn, P. H. Frampton, H. R. Norton and T. Takahashi, Astropart. Phys. 20 (2003) 361–367. Google Scholar
    • 54. C. Gruber and O. Luongo, Phys. Rev. D 89 (2014) 103506. Crossref, Web of ScienceGoogle Scholar
    • 55. T. Holsclaw, U. Alam, B. Sanso, H. Lee, K. Heitmann, S. Habib and D. Higdon, Phys. Rev. Lett. 105 (2010) 241302; T. Holsclaw, U. Alam, B. Sanso, H. Lee, K. Heitmann, S. Habib and D. Higdon, Phys. Rev. D 84 (2011) 083501; P. P. Avelino, L. Losano, R. Menezes and J. C. R. E. Oliveira, Phys. Lett. B 717 (2012) 313–318. Google Scholar
    • 56. A. Shafieloo, V. Sahni and A. A. Starobinsky, Phys. Rev. D 86 (2012) 103527; C. Clarkson, M. Cortes and B. J. Bassett, J. Cosmol. Astropart. Phys. 8 (2007) 11; J. A. Vazquez, M. Bridges, M. P. Hobson and A. N. Lasenby, J. Cosmol. Astropart. Phys. 020 (2012) 1209; M. Seikel, C. Clarkson and M. Smith, J. Cosmol. Astropart. Phys. 06 (2012) 036. Google Scholar
    • 57. E. Bianchi and C. Rovelli, Why all these prejudices against a constant? preprint (2010), arXiv:1002.3966; C. J. A. P. Martins, AIP Conf. Proc. 105 (2012) 1514. Google Scholar
    • 58. V. Pavlidou and T. N. Tomaras, J. Cosmol. Astropart. Phys. 020 (2014) 1409; M. Kunz, J. Phys. Conf. Ser. 110 (2007) 062014. Google Scholar
    • 59. M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10 (2001) 213–224. Link, Web of ScienceGoogle Scholar
    • 60. E. V. Linder, Phys. Rev. Lett. 90 (2003) 091301. Crossref, Web of ScienceGoogle Scholar
    • 61. C. Clarkson, M. Cortes and B. A. Bassett, J. Cosmol. Astropart. Phys. 011 (2007) 0708; A. Pavlov, S. Westmoreland, K. Saaidi and B. Ratra, Phys. Rev. D 88 (2013) 123513. Google Scholar
    • 62. V. C. Busti, P. K. S. Dunsby, A. de la Cruz-Dombriz and D. Saez-Gomez, Is cosmography a useful tool for testing cosmology? preprint (2015), arXiv: 1505.05503. Google Scholar
    • 63. A. Aviles, A. Bravetti, S. Capozziello and O. Luongo, Phys. Rev. D 87 (2013) 044012. Crossref, Web of ScienceGoogle Scholar
    • 64. A. Aviles, A. Bravetti, S. Capozziello and O. Luongo, Phys. Rev. D 87 (2013) 064025. Crossref, Web of ScienceGoogle Scholar
    • 65. M. Visser, Class. Quantum Grav. 21 (2004) 2603–2616. Crossref, Web of ScienceGoogle Scholar
    • 66. G. A. Baker, JR. and P. Graves, Encyclopedia of Mathematics and its Applications, Vols. 13 and 14 (Addison-Wesley, 1981); W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1993); A. R. Liddle, P. Parsons and J. D. Barrow, Phys. Rev. D 50 (1994) 7222–7232. Google Scholar
    • 67. M. Della Morte, B. Jager, A. Juttner and H. Wittig, J. High Energy Phys. 055 (2012) 1203; W. B. Jones and W. J. Thron, Continued Fractions, Analytic Theory and Applications, Encyclopedia of Mathematics and its Applications, Vol. 11 (Addison-Wesley Publishing, 1980); S. G. Krantz and H. R. Parks, A Primer of Real Analytic Functions (Birkhäuser), 1992). Google Scholar
    • 68. A. Aviles, A. Bravetti, S. Capozziello and O. Luongo, Phys. Rev. D 90 (2014) 043531; T. D. Saini, S. Raychaudhury, V. Sahni and A. A. Starobinsky, Phys. Rev. Lett. 85 (2000) 1162–1165. Google Scholar
    • 69. H. Wei, X.-P. Yan and Y.-N. Zhou, J. Cosmol. Astropart. Phys. 045 (2014) 1401; J. Liu and H. Wei, Cosmological models and gamma-ray bursts calibrated by using Padé method, preprint (2015), arXiv:1410.3960; A. Alho and C. Uggla, J. Math. Phys. 56 (2015) 012502; I. Semiz and A. K. Camlibel, What do the cosmological supernova data really tell us?, preprint (2015), arXiv:1505.04043. Google Scholar
    • 70. L. Verde, Lect. Notes Phys. 800 (2010) 147–177. CrossrefGoogle Scholar
    • 71. N. Suzuki et al., Astrophys. J. 85 (2012) 746. Google Scholar
    • 72. M. Kowalski et al., Astrophys. J. 686 (2008) 749. Crossref, Web of ScienceGoogle Scholar
    • 73. R. Amanullah et al., Astrophys. J. 716 (2010) 712. Crossref, Web of ScienceGoogle Scholar
    • 74. R. Durrer, Philos. Trans. R. Soc. A 369 (2011) 5102. Crossref, Web of ScienceGoogle Scholar
    • 75. W. J. Percival et al., Mon. Not. R. Astron. Soc. 401 (2010) 2148. Crossref, Web of ScienceGoogle Scholar
    • 76. J. Simon, L. Verde and R. Jimenez, Phys. Rev. D 71 (2005) 123001. Crossref, Web of ScienceGoogle Scholar
    • 77. D. Stern et al., J. Cosmol. Astropart. Phys. 008 (2010) 1002. Google Scholar
    • 78. M. Moresco et al., J. Cosmol. Astropart. Phys. 006 (2012) 1208. Google Scholar
    • 79. N. G. Busca et al., Astron. Astrophys. 552 (2012) A96. Crossref, Web of ScienceGoogle Scholar
    • 80. C. Zhang et al., Res. Astron. Astrophys. 14 (2014) 1221. Crossref, Web of ScienceGoogle Scholar
    • 81. C. Blake et al., Mon. Not. R. Astron. Soc. 425 (2012) 405. Crossref, Web of ScienceGoogle Scholar
    • 82. C. H. Chuang et al., Mon. Not. R. Astron. Soc. 435(1) (2013) 255. Crossref, Web of ScienceGoogle Scholar
    • 83. R. Jimenez et al., Astropyhs. J. 593 (2003) 622. Crossref, Web of ScienceGoogle Scholar
    • 84. L. Verde, H. Peiris and R. Jimenez, J. Cosmol. Astropart. Phys. 019 (2006) 0601. Google Scholar
    • 85. M. Demianski et al., Mon. Not. R. Astron. Soc. 426 (2012) 1396. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out new Mathematical Physics books in our Mathematics 2021 catalogue
    Featuring authors Bang-Yen Chen, John Baez, Matilde Marcolli and more!