World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

OPEN VIRTUAL STRUCTURE CONSTANTS AND MIRROR COMPUTATION OF OPEN GROMOV–WITTEN INVARIANTS OF PROJECTIVE HYPERSURFACES

    https://doi.org/10.1142/S0219887814500054Cited by:2 (Source: Crossref)

    In this paper, we generalize Walcher's computation of the open Gromov–Witten invariants of the quintic hypersurface to Fano and Calabi–Yau projective hypersurfaces. Our main tool is the open virtual structure constants. We also propose the generalized mirror transformation for the open Gromov–Witten invariants, some parts of which are proven explicitly. We also discuss possible modification of the multiple covering formula for the case of higher-dimensional Calabi–Yau manifolds. The generalized disk invariants for some Calabi–Yau and Fano manifolds are shown and they are certainly integers after resummation by the modified multiple covering formula. This paper also contains the direct integration method of the period integrals for higher-dimensional Calabi–Yau hypersurfaces in the Appendix.

    AMSC: 14N35, 14J32, 14J33

    References