Optimizing the propagation of mesoscopic twin-beam states for novel quantum communication protocols
Abstract
Nowadays, optical Quantum Communication has reached a mature level, especially in free space and through optical fibers. Experimental implementations usually involve single-photon states or weak coherent states detected by single-photon detectors. In contrast to these standard configurations, in our work we consider mesoscopic twin-beam (TWB) states revealed by photon-number-resolving detectors. By properly acting on the natural divergence of the generated beams, we show that they remain nonclassical even at a moderate distance from the nonlinear crystal in which they are produced. We also consider the case where one of the two parties of TWB is partially transmitted through water, and show that the nonclassicality of the states is preserved. This result suggests that mesoscopic TWB states can be considered for the new and growing scenario of underwater Quantum Communication.
References
- 1. , J. Cryptol. 5 (1992) 3. Crossref, Google Scholar
- 2. , Nature 378 (1995) 449. Crossref, Web of Science, Google Scholar
- 3. , Nature 421 (2003) 509. Crossref, Web of Science, Google Scholar
- 4. , Nature 430 (2004) 849. Crossref, Web of Science, Google Scholar
- 5. , Nature 419 (2002) 450. Crossref, Web of Science, Google Scholar
- 6. , Science 301 (2003) 621. Crossref, Web of Science, Google Scholar
- 7. , Nat. Photonics 4 (2010) 376. Crossref, Web of Science, Google Scholar
- 8. , Nat. Photonics 1 (2007) 165. Crossref, Web of Science, Google Scholar
- 9. , Phys. Rev. Lett. 108 (2012) 220501. Crossref, Web of Science, Google Scholar
- 10. , Phys. Rev. Lett. 109 (2012) 200502. Crossref, Web of Science, Google Scholar
- 11. , Adv. Quantum Technol. 2 (2019) 1900038. Crossref, Google Scholar
- 12. , Rep. Prog. Phys. 82 (2019) 016001. Crossref, Web of Science, Google Scholar
- 13. , Opt. Express 24 (2016) 12254. Crossref, Web of Science, Google Scholar
- 14. , Phys. Rev. Lett. 121 (2018) 190502. Crossref, Web of Science, Google Scholar
- 15. , Npj Quantum Inf. 7 (2021) 3. Crossref, Web of Science, Google Scholar
- 16. , Opt. Express 25 (2017) 19795. Crossref, Web of Science, Google Scholar
- 17. , New J. Phys. 22 (2020) 093074. Crossref, Web of Science, Google Scholar
- 18. , J. Opt. Soc. Am. B 36 (2019) 3275. Crossref, Web of Science, Google Scholar
- 19. , Appl. Sci. 10 (2020) 9094. Crossref, Google Scholar
- 20. , Opt. Express 29 (2021) 32842. Crossref, Web of Science, Google Scholar
- 21. , Phys. Lett. A 423 (2022) 127828. Crossref, Web of Science, Google Scholar
- 22. , J. Opt. B, Quantum Semiclassical Opt. 7 (2005) S652. Crossref, Google Scholar
- 23. , J. Phys. A 40 (2007) 7821. Crossref, Google Scholar
- 24. , Phys. Rev. Lett. 100 (2008) 013605. Crossref, Web of Science, Google Scholar
- 25. , Phys. Rev. A 96 (2017) 043845. Crossref, Web of Science, Google Scholar
- 26. , Phys. Rev. A 102 (2020) 043713. Crossref, Web of Science, Google Scholar
- 27. , J. Mod. Opt. 56 (2009) 226. Crossref, Web of Science, Google Scholar
- 28. , Adv. Sci. Lett. 2 (2009) 463. Crossref, Web of Science, Google Scholar
- 29. , J. Opt. Soc. Am. B 31 (2014) B14. Crossref, Web of Science, Google Scholar
- 30. , Phys. Rev. A 76 (2007) 013833. Crossref, Web of Science, Google Scholar
- 31. , Phys. Rev. A 85 (2012) 063835. Crossref, Web of Science, Google Scholar
- 32. , Appl. Phys. Lett. 104 (2014) 041113. Crossref, Web of Science, Google Scholar
- 33. , Appl. Opt. 36 (1997) 8710. Crossref, Web of Science, Google Scholar
- 34. , Opt. Express 30 (2022) 44175. Crossref, Web of Science, Google Scholar
Remember to check out the Most Cited Articles! |
---|
Check out Annual Physics Catalogue 2019 and recommend us to your library! |