World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Optimizing the propagation of mesoscopic twin-beam states for novel quantum communication protocols

    https://doi.org/10.1142/S021974992340004XCited by:3 (Source: Crossref)
    This article is part of the issue:

    Nowadays, optical Quantum Communication has reached a mature level, especially in free space and through optical fibers. Experimental implementations usually involve single-photon states or weak coherent states detected by single-photon detectors. In contrast to these standard configurations, in our work we consider mesoscopic twin-beam (TWB) states revealed by photon-number-resolving detectors. By properly acting on the natural divergence of the generated beams, we show that they remain nonclassical even at a moderate distance from the nonlinear crystal in which they are produced. We also consider the case where one of the two parties of TWB is partially transmitted through water, and show that the nonclassicality of the states is preserved. This result suggests that mesoscopic TWB states can be considered for the new and growing scenario of underwater Quantum Communication.

    References

    Remember to check out the Most Cited Articles!

    Check out Annual Physics Catalogue 2019 and recommend us to your library!