Effect of frequency deviance direction on performance and mismatch negativity
Abstract
The mismatch negativity (MMN) component of the auditory event-related potential is associated with automatic perceptual inference concerning changes in auditory stimulation. Recent studies have addressed the question whether performance and MMN is affected by the direction of frequency deviance. In the present study, the frequency MMN and performance is investigated during an auditory identification task. Specifically, we examined the effect of positive and negative differences between the present stimulus and the previous response frequencies on performance as well as on the characteristics of stimulus-locked ERPs and brain activation maps. The results show that frequency deviants creating mismatch conditions increase the likelihood of error commission. The decrease in performance achieves statistical significance in the case of positive frequency deviants. In the latter case, ERP amplitude values of the Fz electrode at 164 ms after stimulus onset are statistically larger for mismatch as opposed to no-mismatch condition. This corresponds to significance differences in the activation maps at Brodmann area 11, superior frontal gyrus, and the frontal lobe. The present findings revealed dissociations in behavioral and ERP responses in the processing of positive and negative frequency deviance, lending support to the notion that MMN is more sensitive to increments than to decrements in frequency.
References
- Int. J. Psychophysiol. 46, 215 (2002), DOI: 10.1016/S0167-8760(02)00113-7. Crossref, Medline, Web of Science, Google Scholar
- Psychol. Bull. 133, 651 (2007), DOI: 10.1037/0033-2909.133.4.651. Crossref, Medline, Web of Science, Google Scholar
- Neuroimage 9, 135 (1999), DOI: 10.1006/nimg.1998.0389. Crossref, Medline, Web of Science, Google Scholar
- Neuroimage 20, 1270 (2003), DOI: 10.1016/S1053-8119(03)00389-6. Crossref, Medline, Web of Science, Google Scholar
- Eur. J. Neurosci. 20, 1960 (2004), DOI: 10.1111/j.1460-9568.2004.03631.x. Crossref, Medline, Web of Science, Google Scholar
- Clin. Neurophysiol. 120, 453 (2009), DOI: 10.1016/j.clinph.2008.11.029. Crossref, Medline, Web of Science, Google Scholar
- Psychophysiology 27, 627 (1990), DOI: 10.1111/j.1469-8986.1990.tb03184.x. Crossref, Medline, Web of Science, Google Scholar
- Psychophysiology 38, 723 (2001), DOI: 10.1111/1469-8986.3840723. Crossref, Medline, Web of Science, Google Scholar
- Behav. Brain Func. 5, 5 (2009), DOI: 10.1186/1744-9081-5-5. Crossref, Medline, Web of Science, Google Scholar
- Behav. Brain Func. 6, 14 (2010), DOI: 10.1186/1744-9081-6-14. Crossref, Medline, Web of Science, Google Scholar
- J. Basic Clin. Physiol. Pharmacol. 15, 29 (2004), DOI: 10.1186/1744-9081-6-14. Crossref, Medline, Web of Science, Google Scholar
- Neurosci. Lett. 276, 169 (1999), DOI: 10.1016/S0304-3940(99)00807-1. Crossref, Medline, Web of Science, Google Scholar
- Neuroimage 37, 561 (2007), DOI: 10.1016/j.neuroimage.2007.05.040. Crossref, Medline, Web of Science, Google Scholar
- J. Acoustical. Soc. Am. 74, 750 (1983), DOI: 10.1121/1.389861. Crossref, Medline, Web of Science, Google Scholar
- Brain Top 20, 249 (2008), DOI: 10.1007/s10548-008-0054-5. Crossref, Medline, Web of Science, Google Scholar
- Neuroreport 13, 1317 (2002), DOI: 10.1007/s10548-008-0054-5. Crossref, Medline, Web of Science, Google Scholar
-
R. Näätänen , Attention and Brain Function ( Lawrence Erlbaum Associates Publishers , Hillsdale , 1992 ) . Google Scholar - Psychological Bulletin 125, 826 (1999). Crossref, Medline, Web of Science, Google Scholar
- Trends Neurosci. 24, 283 (2001). Crossref, Medline, Web of Science, Google Scholar
- Neuroimage 15, 167 (2002), DOI: 10.1006/nimg.2001.0970. Crossref, Medline, Web of Science, Google Scholar
- Clin Neurophysiol 118, 177 (2007), DOI: 10.1016/j.clinph.2006.09.001. Crossref, Medline, Web of Science, Google Scholar
- Clin. Neurophysiol. 121, 1043 (2010), DOI: 10.1016/j.clinph.2010.02.009. Crossref, Medline, Web of Science, Google Scholar
- Meth. Find. Exp. Clin. Pharmacol. 24, 5 (2002), DOI: 10.1016/j.clinph.2010.02.009. Medline, Google Scholar
- Trends Cogn. Sci. 14, 16 (2010), DOI: 10.1016/j.tics.2009.11.001. Crossref, Medline, Web of Science, Google Scholar
- Neurosci. Lett. 482(1), 71 (2010), DOI: 10.1016/j.neulet.2010.07.010. Crossref, Medline, Web of Science, Google Scholar
- Audiology and Neuro-Otology 5, 111 (2000), DOI: 10.1016/j.neulet.2010.07.010. Crossref, Medline, Web of Science, Google Scholar
- Neuroimage 4, 159 (1996), DOI: 10.1006/nimg.1996.0067. Crossref, Medline, Web of Science, Google Scholar
- Neuroimage 12, 14 (2000), DOI: 10.1006/nimg.2000.0591. Crossref, Medline, Web of Science, Google Scholar
- Cogn. Brain Res. 16, 250 (2003), DOI: 10.1016/S0926-6410(02)00280-X. Crossref, Medline, Google Scholar
- Neuroreport 9, 4167 (1998), DOI: 10.1097/00001756-199812210-00031. Crossref, Medline, Web of Science, Google Scholar
- Neuroreport 16, 1519 (2005), DOI: 10.1097/01.wnr.0000177002.35193.4c. Crossref, Medline, Web of Science, Google Scholar
- Brain Res. 1075, 165 (2006), DOI: 10.1016/j.brainres.2005.12.074. Crossref, Medline, Web of Science, Google Scholar
- Electroencephalogr. Clin. Neurophysiol. 108, 406 (1998), DOI: 10.1016/j.brainres.2005.12.074. Crossref, Medline, Google Scholar
- J. Cogn. Neurosci. 18, 1292 (2006). Crossref, Medline, Web of Science, Google Scholar
- Brain Res. 742, 239 (1996), DOI: 10.1016/S0006-8993(96)01008-6. Crossref, Medline, Web of Science, Google Scholar
- J. Psychophysiol. 21, 147 (2007), DOI: 10.1027/0269-8803.21.34.147. Crossref, Web of Science, Google Scholar
- Neuroreport 12, 2583 (2001), DOI: 10.1097/00001756-200108080-00058. Crossref, Medline, Web of Science, Google Scholar
- Science 256, 846 (1992), DOI: 10.1126/science.1589767. Crossref, Medline, Web of Science, Google Scholar