World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
https://doi.org/10.1142/S0219622022500985Cited by:5 (Source: Crossref)

The concentration point of this study is Criteria Weighting (CW) solutions which are the methods to determine the weights of the criteria in Multiple Attribute Decision Making (MADM). Although there are various CW methods in the related literature, there is no extensive typology framework or coding approach for the methods. Hence, this paper aims at establishment of a novel comprehensive typology scheme with consistent notations for the CW methods, conducting an extensive review of different CW methods, and identification of relevant classifications. The motivation is to help a fast access to the relevant literature, better capabilities to address suitable CW methods in real-world problems, and better communication among the MADM/CW researchers. The basic feature of the proposed approach is the identified underlying concepts (called rule) of the CW methods. Under the study, several rules were identified and coded. The paper also portrays a complete and up-to-date survey of the published literature on the original CW methods. In addition, to select appropriate methods in real-life situations, a set of brief guidelines are raised up. This helps decision/policy makers to choose the best-fit methods to employ in their real-life challenges.

References

  • 1. Y. Peng, G. Kou, G. Wang and Y. Shi , FAMCDM: A fusion approach of MCDM methods to rank multiclass classification algorithms, Omega 39(6) (2011) 677–689. Crossref, Web of ScienceGoogle Scholar
  • 2. G. Kou, Y. Lu, Y. Peng and Y. Shi , Evaluation of classification algorithms using MCDM and rank correlation, International Journal of Information Technology & Decision Making 11(01) (2012) 197–225. Link, Web of ScienceGoogle Scholar
  • 3. M. A. Alsalem, R. Mohammed, O. S. Albahri, A. A. Zaidan, A. H. Alamoodi, K. Dawood, A. Alnoor, A. S. Albahri, B. B. Zaidan, U. Aickelin, H. Alsattar, M. Alazab and F. Jumaah , Rise of multi-attribute decision-making in combating COVID-19: A systematic review of the state-of-the-art literature, International Journal of Intelligent Systems 37(4) (2021) 1–111. Google Scholar
  • 4. C. L. Hwang and K. Yoon , Multiple Attribute Decision Making: Methods and Applications: A State-of-the-art Survey (Springer, Berlin, 1981). CrossrefGoogle Scholar
  • 5. F. I. Khan, R. Sadiq and M. M. Haddara , Risk-based inspection and maintenance (RBIM): Multi-attribute decision-making with aggregative risk analysis, Process Safety and Environmental Protection 82(6) (2004) 398–411. Crossref, Web of ScienceGoogle Scholar
  • 6. G. H. Tzeng and J. J. Huang , Multiple-Attribute Decision Making: Methods and Applications (CRC Press, Boca Raton, USA, 2011). CrossrefGoogle Scholar
  • 7. O. S. Albahri, A. A. Zaidan, M. M. Salih, B. B. Zaidan, M. A. Khatari, M. A. Ahmed, A. S. Albahri and M. Alazab , Multidimensional benchmarking of the active queue management methods of network congestion control based on an extension of the fuzzy decision by opinion score method, International Journal of Intelligent Systems 36(2) (2021) 796–831. Crossref, Web of ScienceGoogle Scholar
  • 8. N. Bryson and A. Joseph , Generating consensus priority point vectors: A logarithmic goal programming approach, Computers & Operations Research 26(6) (1999) 637–643. Crossref, Web of ScienceGoogle Scholar
  • 9. T. L. Saaty , Decision making with the AHP: Why is the principal eigenvector necessary? European Journal of Operational Research 145(1) (2003) 85–91. Crossref, Web of ScienceGoogle Scholar
  • 10. E. U. Choo and W. C. Wedley , A common framework for deriving preference values from pair-wise comparison matrices, Computers & Operations Research 31(6) (2004) 893–908. Crossref, Web of ScienceGoogle Scholar
  • 11. M. A. Hatefi , Indifference Threshold-based attribute ratio analysis: A method for assigning the weights to the attributes in multiple attribute decision making, Applied Soft Computing 74 (2019) 643–651. Crossref, Web of ScienceGoogle Scholar
  • 12. R. L. Keeney and H. Raiffa , Decisions with Multiple Objectives: Preferences and Value Trade-offs (John Wiley and Sons, NY, USA, 1976). Google Scholar
  • 13. M. Weber and K. Borcherding , Behavioral influences on weight judgments in multi-attribute decision making, European Journal of Operational Research 67(1) (1993) 1–12. Crossref, Web of ScienceGoogle Scholar
  • 14. H. Vgood , Multi-criteria Evaluation for Urban and Regional Planning (Delftsche Uitgevers, Maatschappij, Pion, London, UK, 1982). Google Scholar
  • 15. G. H. Tzeng, T. Y. Chen and J. C. Wang , A weight assessing method with habitual domains, European Journal of Operational Research 110(2) (1998) 342–367. Crossref, Web of ScienceGoogle Scholar
  • 16. R. Ramanathan , Data envelopment analysis for weight derivation and aggregation in the analytic hierarchy process, Computers & Operations Research 33(5) (2006) 1289–1307. Crossref, Web of ScienceGoogle Scholar
  • 17. P. A. Bottomley and J. R. Doyle , A comparison of three weight elicitation methods: Good, better, and best, Omega 29 (2001) 553–560. Crossref, Web of ScienceGoogle Scholar
  • 18. M. P. Strager and R. S. Rosenberger , Incorporating stakeholder preferences for land conservation: Weights and measures in spatial MCA, Ecological Economics 58 (2006) 79–92. Crossref, Web of ScienceGoogle Scholar
  • 19. W. G. Stillwell, D. A. Seaver and W. Edwards , A comparison of weight approximation techniques in multi-attribute utility decision making, Organizational Behavior and Human Performance 28(1) (1981) 62–77. Crossref, Web of ScienceGoogle Scholar
  • 20. G. Wascher, H. Hausner and H. Schumann , An improved typology of cutting and packing problems, European Journal of Operational Research 183(3) (2007) 1109–1130. Crossref, Web of ScienceGoogle Scholar
  • 21. D. Pamucar, Z. Stevic and S. Sremac , A new model for determining weight coefficients of criteria in MCDM models: Full consistency method (FUCOM), Symmetry 10(393) (2018) 2–22. Google Scholar
  • 22. M. Danielson and L. Ekenberg , An improvement to swing techniques for elicitation in MCDM methods, Knowledge-Based Systems 168 (2019) 70–79. Crossref, Web of ScienceGoogle Scholar
  • 23. M. Zizovic, D. Pamucar, G. Cirovic, M. M. Zizovic and B. D. Miljkovic , Model for determining weight confidents by forming a non-decreasing series at criteria significance levels (NDSL), Mathematics 8(745) (2020b). Google Scholar
  • 24. K. V. Ittersum, J. M. E. Pennings, B. Wansink and H. C. M. van Trijp , The validity of attribute-importance measurement: A review, Journal of Business Research 60(11) (2007) 1177–1190. Crossref, Web of ScienceGoogle Scholar
  • 25. F. F. Silva, C. L. M. Souza, F. F. Silva, H. G. Costa, H. R. M. Hora and M. E. Junior , Elicitation of criteria weights for multi-criteria models: Bibliometrics, typologies, characteristics and applications, Brazilian Journal of Operations & Production Management 18(4) (2021) e2021901. Crossref, Web of ScienceGoogle Scholar
  • 26. Z. P. Fan, J. Ma and Q. Zhang , An approach to multiple attribute decision making based on fuzzy preference information on alternatives, Fuzzy Sets and Systems 131(1) (2002) 101–106. Crossref, Web of ScienceGoogle Scholar
  • 27. M. Danielson and L. Ekenberg , The CAR method for using preference strength in multi-criteria decision making, Group Decision and Negotiation 25(4) (2016) 775–797. Crossref, Web of ScienceGoogle Scholar
  • 28. J. Ma, Z. P. Fan and L. H. Huang , A subjective and objective integrated approach to determine attributes weights, European Journal of Operational Research 112(2) (1999) 397–404. Crossref, Web of ScienceGoogle Scholar
  • 29. Y. M. Wang and C. Parkan , A general multiple attribute decision making approach for integrating subjective preferences and objective information, Fuzzy Sets and Systems 157(10) (2006) 1333–1345. Crossref, Web of ScienceGoogle Scholar
  • 30. Y. M. Wang and Y. Luo , Integration of correlations with standard deviations for determining attributes weights in multiple attribute decision making, Mathematical and Computer Modelling 51(1–2) (2010) 1–12. Crossref, Web of ScienceGoogle Scholar
  • 31. Z. Xu , Attribute weights determination models for consensus maximization in mu ltiple attribute group decision making, International Journal of General Systems 40(7) (2013) 755–774. Crossref, Web of ScienceGoogle Scholar
  • 32. G. L. Yang, J. B. Yang, D. L. Xu and M. Khoveyni , A three-stage hybrid approach for weight assignment in MADM, Omega 71 (2017) 93–105. Crossref, Web of ScienceGoogle Scholar
  • 33. H. Sellak, B. Ouhbi, B. Frikh and B. Ikken , Expertise-based consensus building for MCGDM with hesitant fuzzy linguistic information, Information Fusion 50 (2019) 54–70. Crossref, Web of ScienceGoogle Scholar
  • 34. Z. S. Chen, X. Zhang, R. M. Rodriguez, W. Pedrycz and L. Martinez , Expertise-based bid evaluation for construction-contractor selection with generalized comparative linguistic ELECTRE III, Automation in Construction 125(2021) (2021) 103578. Crossref, Web of ScienceGoogle Scholar
  • 35. M. Zeleny , Multiple Criteria Decision Making (McGraw-Hill, NY, USA, 1982). Google Scholar
  • 36. C. Kao , Weight determination for consistently ranking alternatives in multiple criteria decision analysis, Applied Mathematical Modeling 34(7) (2010) 1779–1787. Crossref, Web of ScienceGoogle Scholar
  • 37. T. L. Saaty , The Analytic Hierarchy Process (McGraw-Hill, NY, USA, 1980). Google Scholar
  • 38. R. M. Dawes and B. Corrigan , Linear models in decision making, Psychological Bulletin 81(2) (1974) 91–106. Crossref, Web of ScienceGoogle Scholar
  • 39. P. J. Hoffman , The paramorphic representation of clinical judgment, Psychological Bull 57(2) (1960) 116–131. Crossref, Web of ScienceGoogle Scholar
  • 40. J. R. Doyle, R. H. Green and P. A. Bottomley , Judging relative importance: direct rating and point allocation are not equivalent, Organizational Behavior and Human Decision Processes 70(1) (1997) 65–72. Crossref, Web of ScienceGoogle Scholar
  • 41. P. G. Leon , On the death of SMART and the birth of GRAPA, Organizational Behavior and Human Decision Processes 71(3) (1997) 249–262. Crossref, Web of ScienceGoogle Scholar
  • 42. D. Von Winterfeldt and W. Edwards , Decision Analysis and Behavioral Research (Cambridge University Press, Cambridge, MA, UK, 1986). Google Scholar
  • 43. A. Larsson, M. Riabacke, M. Danielson and L. Ekenberg , Cardinal and rank ordering of criteria-addressing prescription within weight elicitation, International Journal of Information Technology & Decision Making 14(6) (2015) 1299–1330. Link, Web of ScienceGoogle Scholar
  • 44. C. W. Churchman and R. L. Ackoff , An approximate measure of value, Journal of the Operations Research Society 2(2) (1954) 172–187. Web of ScienceGoogle Scholar
  • 45. A. L. Knoll and A. Engelberg , Weighting multiple objectives: The Churchman-Ackoff technique revisited, Computers & Operations Research 5(3) (1978) 165–177. Crossref, Web of ScienceGoogle Scholar
  • 46. V. Kersulien, E. K. Zavadskas and Z. Turskis , Selection of rational dispute method by applying new step-wise weight assessment ratio analysis (SWARA), Journal of Business Economics and Management 11(2) (2010) 243–258. Crossref, Web of ScienceGoogle Scholar
  • 47. J. Rezaei , Best-worst multi-criteria decision making method, Omega 53 (2015) 49–57. Crossref, Web of ScienceGoogle Scholar
  • 48. D. Stanujkic, E. K. Zavadskas, D. Karabasevic, F. Smarandache and Z. Turskis , The use of the pivot pairwise relative criteria importance assessment (PIPRECIA) method for determining the weights of criteria, Romanian Journal of Economic Forecasting 20(4) (2017) 118–136. Web of ScienceGoogle Scholar
  • 49. M. Zizovic and D. Pamucar , New model for determining criteria weights: Level-based weight assignment (LBWA) model, Decision Making: Applications in Management and Engineering 2(2) (2019) 126–137. CrossrefGoogle Scholar
  • 50. T. L. Saaty , A scaling method for priorities in hierarchical structures, Journal of Mathematical Psychology 15(3) (1977) 234–281. Crossref, Web of ScienceGoogle Scholar
  • 51. A. T. W. Chu, R. E. Kalaba and K. Spingarn , A comparison of two methods for determining the weights of belonging to fuzzy sets, Journal of Optimization Theory and Applications 27(4) (1979) 531–538. Crossref, Web of ScienceGoogle Scholar
  • 52. R. E. Stueur and E. U. Choo , An interactive weighted Tchebyche2 procedure for multiple objective programming, Mathematical Programming 26(3) (1983) 326–344. Crossref, Web of ScienceGoogle Scholar
  • 53. R. E. Jensen, Comparisons of eigenvector, least squares, chi square and logarithmic least squares methods of scaling a reciprocal matrix, Trinity University, Working Paper, No. 127 (1984). Google Scholar
  • 54. G. Crawford and C. Williams , A note on the analysis of subjective judgment matrices, Journal of Mathematical Psychology 29(4) (1985) 387–405. Crossref, Web of ScienceGoogle Scholar
  • 55. K. O. Cogger and P. L. Yu , Eigen-weight vectors and least distance approximation for revealed preference in pairwise weight ratios, Journal of Optimization Theory and Applications 46(4) (1985) 483–491. Crossref, Web of ScienceGoogle Scholar
  • 56. F. Zahedi , A simulation study of estimation methods in the analytic hierarchy process, Socio-Economic Planning Sciences 20(6) (1986) 347–354. Crossref, Web of ScienceGoogle Scholar
  • 57. G. Islei and A. G. Lockett , Judgmental modeling based on geometric least square, European Journal of Operational Research 36(1) (1988) 27–35. Crossref, Web of ScienceGoogle Scholar
  • 58. A. Arbel , A linear programming approach for processing approximate articulation of preference, in Multiple Criteria Decision Support, eds. P. Korhonen, A. Lewandowski and J. Wallenius (Springer, Berlin, 1989), pp. 79–86. Google Scholar
  • 59. N. Bryson , A goal programming method for generating priority vectors, Journal of the Operational Research Society 46(5) (1995) 641–648. Crossref, Web of ScienceGoogle Scholar
  • 60. J. W. Ra , Chain-wise paired comparisons, Decision Sciences 30(2) (1999) 581–599. Crossref, Web of ScienceGoogle Scholar
  • 61. Z. S. Xu , Generalized chi-square method for the estimation of weights, Journal of Optimization Theory and Applications 107(1) (2000) 183–192. Crossref, Web of ScienceGoogle Scholar
  • 62. L. Mikhailov , A fuzzy programming method for deriving priorities in the analytic hierarchy process, Journal of the Operational Research Society 51(3) (2000) 341–349. Crossref, Web of ScienceGoogle Scholar
  • 63. S. Lipovetsky and W. M. Conklin , Robust estimation of priorities in the AHP, European Journal of Operational Research 137(1) (2002) 110–122. Crossref, Web of ScienceGoogle Scholar
  • 64. E. Herrera-Viedma, F. Herrera, F. Chiclana and M. Luque , Some issues on consistency of fuzzy preference relations, European Journal of Operational Research 154(1) (2004) 98–109. Crossref, Web of ScienceGoogle Scholar
  • 65. S. I. Gass and T. Rapcsak , Singular value decomposition in AHP, European Journal of Operational Research 154(3) (2004) 573–584. Crossref, Web of ScienceGoogle Scholar
  • 66. B. Chandrana, B. Goldenb and E. Wasilc , Linear programming models for estimating weights in the analytic hierarchy process, Computers & Operations Research 32(9) (2005) 2235–2254. Crossref, Web of ScienceGoogle Scholar
  • 67. B. Srdjevic , Combining different prioritization methods in the analytic hierarchy process synthesis, Computers & Operations Research 32(7) (2005) 1897–1919. Crossref, Web of ScienceGoogle Scholar
  • 68. C. C. Lin , An enhanced goal programming method for generating priority vectors, Journal of the Operational Research Society 57(12) (2006) 1491–1496. Crossref, Web of ScienceGoogle Scholar
  • 69. Y. M. Wang, C. Parkan and Y. Luo , Priority estimation in the AHP through maximization of correlation coefficient, Applied Mathematical Modelling 31(12) (2007) 2711–2718. Crossref, Web of ScienceGoogle Scholar
  • 70. A. Z. Grzybowski , Goal programming approach for deriving priority vectors — some new ideas, Scientific Research of the Institute of Mathematics and Computer Science 9(1) (2010) 17–27. Google Scholar
  • 71. B. Srdjevic and Z. Srdjevic , Bi-criteria evolution strategy in estimating weights from the AHP ratio-scale matrices, Applied Mathematics and Computation 218(1) (2011) 1254–1266. Crossref, Web of ScienceGoogle Scholar
  • 72. V. Shukla and G. Auriol , Methodology for determining stakeholders’ criteria weights in systems engineering, in Proc. Posters Workshop at CSD & M, Paris, 4 December (2013), France. Google Scholar
  • 73. C. Lin, G. Kou and D. Ergu , A heuristic approach for deriving the priority vector in AHP, Applied Mathematical Modelling 37(8) (2013) 5828–5836. Crossref, Web of ScienceGoogle Scholar
  • 74. G. Kou and C. Lin , A cosine maximization method for the priority vector derivation in AHP, European Journal of Operational Research 235(1) (2014) 225–232. Crossref, Web of ScienceGoogle Scholar
  • 75. J. Zhang, G. Kou, Y. Peng and Y. Zhang , Estimating priorities from relative deviations in pairwise comparison matrices, Information Sciences 552 (2021) 310–327. Crossref, Web of ScienceGoogle Scholar
  • 76. T. L. Saaty , Fundamentals of Decision Making and Priority Theory with the Analytic Hierarchy Process (RWS Publications, Pittsburgh, PA, USA, 1994). Google Scholar
  • 77. C. A. Bana e Costa, Structuration, construction et exploitation d’un modele multi critere d’aide a la decision, Ph.D. dissertation, Technical University of Lisbon, Lisbon (1992). Google Scholar
  • 78. J. Barzilai, W. D. Cook and B. Golany , Consistent weights for judgments matrices of the relative importance of alternatives, Operations Research Letters 6(3) (1987) 131–134. Crossref, Web of ScienceGoogle Scholar
  • 79. Q. Zhang, J. C. H. Chen and P. P. Chong , Decision consolidation: Criteria weight determination using multiple preferences formats, Decision Support Systems 38(2) (2004) 247–258. Crossref, Web of ScienceGoogle Scholar
  • 80. J. Kacprzyk , Group decision making with a fuzzy majority, Fuzzy Sets and Systems 18(2) (1986) 105–118. Crossref, Web of ScienceGoogle Scholar
  • 81. M. Jahazi and S. Hossein-Nejad , The development of an optimum manufacturing and material selection process for the fabrication of labyrinth seal strips, Journal of Materials Processing Technology 152(3) (2004) 272–275. Crossref, Web of ScienceGoogle Scholar
  • 82. B. D. Dehghan-Manshadi, H. Mahmudi, A. Abedian and R. Mahmudi , A novel method for materials selection in mechanical design: Combination of non-linear normalization and a modified digital logic method, Material & Design 28(1) (2007) 8–15. Crossref, Web of ScienceGoogle Scholar
  • 83. M. Alemi-Ardakani, A. S. Milani, S. Yannacopoulos and G. Shokouhi , On the effect of subjective, objective and combinative weighting in multiple criteria decision making: A case study on impact optimization of composites, Expert Systems with Applications 46 (2016) 426–438. Crossref, Web of ScienceGoogle Scholar
  • 84. L. E. Shirland, R. R. Jesse, R. L. Thompson and C. L. Iacovou , Determining attribute weights using mathematical programming, Omega 31 (2003) 423–437. Crossref, Web of ScienceGoogle Scholar
  • 85. A. J. Klee , The role of decision models in the evaluation of competing environmental health alternatives, Management Science 18(2) (1971) 52–52. Crossref, Web of ScienceGoogle Scholar
  • 86. D. Yu, G. Kou, Z. Xu and S. Shi , Analysis of collaboration evolution in AHP research: 1982–2018, International Journal of Information Technology & Decision Making 20(1) (2021) 7–36. Link, Web of ScienceGoogle Scholar
  • 87. T. L. Saaty , Decision Making with Dependence and Feedback: The Analytic Network Process (RWS Publication, Pittsburgh, PA, USA, 1996). Google Scholar
  • 88. J. J. H. Liou, G. H. Tzeng and H. C. Chang , Airline safety measurement using a hybrid model, Journal of Air Transport Management 13(4) (2007) 243–249. Crossref, Web of ScienceGoogle Scholar
  • 89. E. Fontela and A. Gabus, DEMATEL, Innovative Methods, Technical report no. 2, Structural analysis of the world problematique, Battelle Geneva Research Institute (1974). Google Scholar
  • 90. A. Hasani and H. Mokhtari , Self-efficiency assessment of sustainable dynamic network healthcare service system under uncertainty: Hybrid fuzzy DEA-MCDM method, Scientia Iranica 29(4) (2022) 2191–2209. Web of ScienceGoogle Scholar
  • 91. M. Doumpos and C. Zopounidis , A multi-criteria classification approach based on pairwise comparisons, European Journal of Operational Research 158(2) (2004) 378–389. Crossref, Web of ScienceGoogle Scholar
  • 92. J. Brans and P. Vincke , A preference ranking organization method: The PROMETHEE method for multiple criteria decision making, Management Science 31(6) (1985) 647–656. Crossref, Web of ScienceGoogle Scholar
  • 93. Y. M. Wang and C. Parkan , Multiple attribute decision making based on fuzzy preference information on alternatives: ranking and weighting, Fuzzy Sets and Systems 153(3) (2005) 331–346. Crossref, Web of ScienceGoogle Scholar
  • 94. F. Lolli, E. Balugani, A. Ishizaka, R. Gamberini, M. A. Butturi, S. Marinello and B. Rimini , On the elicitation of criteria weights in PROMETHEE-based ranking methods for a mobile application, Expert Systems with Applications 120 (2019) 217–227. Crossref, Web of ScienceGoogle Scholar
  • 95. J. Wang and S. Zionts , Using ordinal data to estimate cardinal values, Journal of Multi-Criteria Decision Analysis 22(3–4) (2015) 185–196. CrossrefGoogle Scholar
  • 96. M. G. Kendall , Rank Correlation Method, 3rd edn. (Griffin, London, UK, 1948). Google Scholar
  • 97. J. Simos, Evaluation environnementale: Un processus cognitifnegocie, Ph.D. Dissertation, DGF-EPFL, Lausanne (1990). Google Scholar
  • 98. J. Figueira and B. Roy , Determining the weights of criteria in the ELECTRE-type methods with a revised SIMOS’ procedure, European Journal of Operational Research 139(2) (2002) 317–326. Crossref, Web of ScienceGoogle Scholar
  • 99. E. Siskosa and N. Tsotsolas , Elicitation of criteria importance weights through the Simos method: A robustness concern, European Journal of Operational Research 246(2) (2015) 543–553. Crossref, Web of ScienceGoogle Scholar
  • 100. F. H. Barron , Selecting a best multi attribute alternative with partial information about attribute weights, Acta Psychologica 80(1–3) (1992) 91–103. Crossref, Web of ScienceGoogle Scholar
  • 101. F. A. Lootsma , Multi-Criteria Decision Analysis via Ratio and Difference Judgment (Springer, Berlin, 1999). CrossrefGoogle Scholar
  • 102. H. K. Alfares and S. O. Duffuaa , Assigning cardinal weights in multi-criteria decision making based on ordinal ranking, Journal of Multi-Criteria Decision Analysis 15(5–6) (2008) 125–133. CrossrefGoogle Scholar
  • 103. B. S. Ahn and K. S. Park , Least-Squared ordered weighted averaging operator weights, International Journal of Intelligent Systems 23(1) (2008) 33–49. Crossref, Web of ScienceGoogle Scholar
  • 104. R. R. Yager , On ordered weighted averaging aggregation operators in multi-criteria decision making, IEEE Transactions on Systems, Man, and Cybernetics 18(1) (1988) 183–190. Crossref, Web of ScienceGoogle Scholar
  • 105. M. Danielson and L. Ekenberg , Rank ordering methods for multi-criteria decisions, in Proc. 14th Group Decision and Negotiation (GDN 2014), 10–13 June 2014, Toulouse University, France. Google Scholar
  • 106. D. Liu, T. Li and D. Liang , An integrated approach towards modelling ranked weights, Computers & Industrial Engineering 147(106629) (2020) 1–16. Google Scholar
  • 107. J. H. Paelinck , Qualitative multiple criterion analysis, environmental protection and multi-regional development, Regional Science Association 36(1) (1976) 59–74. CrossrefGoogle Scholar
  • 108. H. Vgood, Multi-criteria evaluation with mixed qualitative and quantitative data. Working paper, International Institute for Applied Systems Analysis, London (IIASA) (1983). Google Scholar
  • 109. R. Roberts and P. Goodwin , Weight approximations in multi-attribute decision models, Journal of Multi-Criteria Decision Analysis 11(6) (2002) 291–303. CrossrefGoogle Scholar
  • 110. M. J. Asgharpour , Group Decision Making and Game Theory (in Persian) (Tehran University Publication, Tehran, Iran, 2003). Google Scholar
  • 111. P. Sarabando and L. C. Dias , Simple procedures of choice in multi-criteria problems without precise information about the alternatives’ values, Computers & Operations Research 37(12) (2010) 2239–2247. Crossref, Web of ScienceGoogle Scholar
  • 112. B. S. Ahn , Compatible weighting method with rank order centroid: Maximum entropy ordered weighted averaging approach, European Journal of Operational Research 212(3) (2011) 552–559. Crossref, Web of ScienceGoogle Scholar
  • 113. V. Diaby, V. Sanogo and K. R. Moussa , ELICIT: An alternative imprecise weight elicitation technique for use in multi-criteria decision analysis for healthcare, Expert Review of Pharmacoeconomics & Outcomes Research 16(1) (2016) 141–147. Crossref, Web of ScienceGoogle Scholar
  • 114. B. S. Ahn , Approximate weighting method for multi-attribute decision problems with imprecise parameters, Omega 72 (2017) 87–95. Crossref, Web of ScienceGoogle Scholar
  • 115. G. Garrod and K. Willis , Economic Valuation of the Environment, Methods and Case Studies (Edward Elgar Publishing Limited, Cheltenham, UK, 1999). Google Scholar
  • 116. B. Nemeth, A. Molna, S. Bozoki, K. Wijaya, A. Inotai, J. D. Campbell and Z. Kalo , Comparison of weighting methods used in multi-criteria decision analysis frameworks in healthcare with focus on low- and middle-income countries, Journal of Comparative Effectiveness Research 8(4) (2019) 195–204. Crossref, Web of ScienceGoogle Scholar
  • 117. L. L. Thurstone , A law of comparative judgment, Psychological Review 34(4) (1927) 273–286. CrossrefGoogle Scholar
  • 118. P. E. Green and V. Srinivasan , Conjoint analysis in consumer behavior: Status and outlook, Journal of Consumer Research 5(1) (1978) 103–123. Crossref, Web of ScienceGoogle Scholar
  • 119. R. N. Shepard , The analysis of proximities: Multidimensional scaling with an unknown distance function I, Psychometrica 27(2) (1962a) 125–140. Crossref, Web of ScienceGoogle Scholar
  • 120. R. N. Shepard , The analysis of proximities: Multidimensional scaling with an unknown distance function II, Psychometrica 27(2) (1962b) 219–246. Crossref, Web of ScienceGoogle Scholar
  • 121. P. Hansen and F. A. Ombler , New method for scoring additive multi-attribute value models using pairwise rankings of alternatives, Journal of Multi-Criteria Decision Analysis 15(3–4) (2008) 87–107. CrossrefGoogle Scholar
  • 122. S. R. Watson and D. M. Buede , Decision Synthesis: The Principles and Practice of Decision Analysis (Cambridge University Press, NY, USA, 1987). Google Scholar
  • 123. T. Solymosi and J. Dombi , A method for determining the weights of criteria: The centralized weights, European Journal of Operational Research 26(1) (1986) 35–41. Crossref, Web of ScienceGoogle Scholar
  • 124. V. Mousseau , Eliciting information concerning the relative importance of criteria, in Advances in Multi-criteria Analysis, Non-convex Optimization and its Applications, eds. P. Pardalos, Y. Siskos and C. Zopounidis (Kluwer Academic Publishers, Dordrecht, 1995). CrossrefGoogle Scholar
  • 125. P. Liu and W. Liu , Maclaurin symmetric means for linguistic z-numbers and their application to multiple attribute decision making, Scientia Iranica 28(5) (2021) 2910–2925. Web of ScienceGoogle Scholar
  • 126. R. Ginevicius , A new determining method for the criteria weights in multi-criteria evaluation, International Journal of Information Technology & Decision Making 10(6) (2011) 1067–1095. Link, Web of ScienceGoogle Scholar
  • 127. D. Dalalah, M. Hajaneh and F. Batieha , A fuzzy multi-criteria decision making model for supplier selection, Expert Systems with Applications 38(7) (2011) 8384–8391. Crossref, Web of ScienceGoogle Scholar
  • 128. A. Kobryn , DEMATEL as a weighting method in multi-criteria decision making analysis, Multi Criteria Decision Making 12(11) (2017) 153–167. CrossrefGoogle Scholar
  • 129. G. Kou, S. Yuksel and H. Dincer , Inventive problem-solving map of innovative carbon emission strategies for solar energy-based transportation investment projects, Applied Energy 311 (2022) 118680. Crossref, Web of ScienceGoogle Scholar
  • 130. R. Davoudabadi, S. Mousavi, E. K. Zavadskas and Y. Dorfeshan , Introducing MOWSCER method for multiple criteria group decision making: A new method of weighting in the structure of cause and effect relationships, International Journal of Information Technology and Decision Making (2022) 1–37. https://doi.org/10.1142/S0219622022500663 Web of ScienceGoogle Scholar
  • 131. M. Keshavarz Ghorabaee, M. Amiri, E. K. Zavadskas, Z. Turskis and J. Antucheviciene , Simultaneous evaluation of criteria and alternatives (SECA) for multi-criteria decision making, Informatica 29(2) (2018) 265–280. Crossref, Web of ScienceGoogle Scholar
  • 132. M. Keshavarz-Ghorabaee, M. Amiri, E. K. Zavadskas, Z. Turskis and J. Antucheviciene , Determination of objective weights using a new method based on the removal effects of criteria (MEREC), Symmetry 13 (2021) 525. Crossref, Web of ScienceGoogle Scholar
  • 133. Z. Moghaddas, M. Vaez-Ghasemi, F. Hosseinzadeh Lotfi and R. Farzipoor Saen , Stepwise pricing in evaluating revenue efficiency in data envelopment analysis: A case study of power plants, Scientia Iranica 29(2) (2022) 915–928. Web of ScienceGoogle Scholar
  • 134. G. R. Jahanshahloo, M. Zohrehbandian, S. Abbasian-Naghneh, E. Hadavandi and A. Ghanbari , Using DEA for evaluating the attribute weights and solving one MADM problem, Australian Journal of Basic and Applied Sciences 4(10) (2010) 5271–5276. Google Scholar
  • 135. M. Zohrehbandian, A. Makui and A. A. Alinezhad , Compromise solution approach for finding common weighs in DEA: An improvement to Kao and Hung’s approach, Journal of the Operations Research Society 61(4) (2010) 604–610. Crossref, Web of ScienceGoogle Scholar
  • 136. A. Charnes, W. W. Cooper and E. Rhodes , Measuring the efficiency of decision making units, European Journal of Operational Research 2(6) (1978) 429–444. Crossref, Web of ScienceGoogle Scholar
  • 137. Y. Y. Song, G. L. Yang, J. B. Yang, M. Khoveyni and D. L. Xu , Using two-layer minimax optimization and DEA to determine attribute weights, Journal of Management Science and Engineering 3(2) (2018) 76–100. CrossrefGoogle Scholar
  • 138. Z. P. Fan, Complicated multiple attribute decision making: Theory and applications, Ph.D. Dissertation, Northeastern University, Shenyang, PRC (1996). Google Scholar
  • 139. J. C. Vansnick , On the problem of weights in multiple criteria decision making (the non-compensatory approach, European Journal of Operational Research 24(2) (1986) 288–294. Crossref, Web of ScienceGoogle Scholar
  • 140. R. Bisdorff, P. Meyer and T. Veneziano , Elicitation of criteria weights maximizing the stability of pairwise outranking statements, Journal of Multi-Criteria Decision Analysis 21(1–2) (2014) 113–124. CrossrefGoogle Scholar
  • 141. D. Diakoulaki, G. Mavrotas and L. Papayannakis , Determining objective weights in multiple criteria problems: The Critic Method, Computers & Operations Research 22(7) (1995) 763–770. Crossref, Web of ScienceGoogle Scholar
  • 142. M. Zizovic, B. D. Miljkovic and D. Marinkovic , Objective methods for determining criteria weight coefficients: A modification of the CRITIC method, Decision Making: Applications in Management and Engineering 3(2) (2020a) 149–161. CrossrefGoogle Scholar
  • 143. A. R. Krishnan, M. M. Kasim, R. Hamid and M. F. A. Ghazali , Modified CRITIC method to estimate the objective weights of decision criteria, Symmetry 13 (2021) 973. Crossref, Web of ScienceGoogle Scholar
  • 144. G. J. Szekely, M. L. Rizzo and N. K. Bakirov , Measuring and testing dependence by correlation of distances, Annuals of Statistics 35 (2007) 2769–2794. Crossref, Web of ScienceGoogle Scholar
  • 145. A. R. Paramanik, S. Sarkar and B. Sarkar , OSWMI: An objective-subjective weighted method for minimizing inconsistency in multi-criteria decision making, Computers & Industrial Engineering 169 (2022) 108138. Crossref, Web of ScienceGoogle Scholar
  • 146. C. E. Shannon , A mathematical theory of communication, Bell System Technical Journal 27 (1948) 379–423, 623–656. Crossref, Web of ScienceGoogle Scholar
  • 147. Y. M. Wang , Using the method of maximizing deviations to make decision for multi-indices, Journal of Systems Engineering and Electronics 8(3) (1997) 21–26. Google Scholar
  • 148. H. W. Lo, C. C. Hsu, C. N. Huang and J. J. H. Liou , An ITARA-TOPSIS based integrated assessment model to identify potential product and system risks, Mathematics 9 (2021) 239. Crossref, Web of ScienceGoogle Scholar
  • 149. E. K. Zavadskas , Integrated Resource Assessment and Selection Decisions in Construction (in Russian) (Mokslas, Vilnius, 1987). Google Scholar
  • 150. B. G. Mirkin , Problema Grupovogo Vibora (in Russian) (Nauka, Moscow, Russia, 1974). Google Scholar
  • 151. L. J. Savage , The theory of statistical decision, Journal of American Statistical Association 46(253) (1951) 55–67. Crossref, Web of ScienceGoogle Scholar
  • 152. V. Lotfi, T. J. Stewart and S. Zionts , An aspiration-level interactive model for multiple-criteria decision making, Computers & Operations Research 19(7) (1992) 671–681. Crossref, Web of ScienceGoogle Scholar
  • 153. M. Rogers and M. Bruen , A new system for weighting environmental criteria for use within ELECTRE III, European Journal of Operational Research 107(3) (1998) 552–563. Crossref, Web of ScienceGoogle Scholar
  • 154. A. T. De Almeida, J. A. De Almeida, A. P. C. Seixas Costa and A. T. De Almeida-Filho , A new method for elicitation of criteria weights in additive models: Flexible and interactive trade-off, European Journal of Operational Research 250(1) (2016) 179–191. Crossref, Web of ScienceGoogle Scholar
  • 155. M. A. Hatefi , BRAW: Block-wise rating the attribute weights in MADM, Computers and Industrial Engineering 156(107274) (2021) 1–14. Google Scholar
  • 156. A. Krylovas, E. K. Zavadskas, N. Kosareva and S. Dadelo , New KEMIRA method for determining criteria priority and weights in solving MCDM problem, International Journal of Information Technology & Decision Making 13(6) (2014) 1119–1133. Link, Web of ScienceGoogle Scholar
  • 157. A. Krylovas, E. K. Zavadskas and N. Kosareva , Multiple criteria decision making KEMIRA-M method for solution of location alternatives, Economic Research-Ekonomska Istrazivanja 29(1) (2016) 50–65. Crossref, Web of ScienceGoogle Scholar
  • 158. A. Krylovas, N. Kosareva and E. K. Zavadskas , WEBIRA — comparative analysis of weight balancing method, International Journal of Computers Communications and Control 12(2) (2017) 238–253. Crossref, Web of ScienceGoogle Scholar
  • 159. A. Krylovas, S. Dadelo, N. Kosareva and E. K. Zavadskas , Entropy–KEMIRA approach for MCDM problem solution in human resources selection task, International Journal of Information Technology and Decision Making 16(05) (2017) 1183–1209. Link, Web of ScienceGoogle Scholar
  • 160. J. Zheng, S. A. M. Takougang, V. Mousseau and M. Pirlot , Learning criteria weights of an optimistic ELECTRE TRI sorting rule, Computers & Operations Research 49 (2014) 28–40. Crossref, Web of ScienceGoogle Scholar
  • 161. H. Kaabi, K. Jabeur and L. Enneifar , Learning criteria weights with TOPSIS method and continuous VNS for multi-criteria inventory classification, Electronic Notes in Discrete Mathematics 47 (2015) 197–204. CrossrefGoogle Scholar
  • 162. M. Aggarwal , On learning of weights through preferences, Information Sciences 321 (2015) 90–102. Crossref, Web of ScienceGoogle Scholar
  • 163. V. Srinivasan and A. D. Shocker , Linear programming techniques for multidimensional analysis of preference, Psychometrika 38(3) (1973) 337–342. Crossref, Web of ScienceGoogle Scholar
  • 164. D. Horsky and M. R. Rao , Estimation of attribute weights from preference comparisons, Management Sciences 30(7) (1984) 1801–822. Web of ScienceGoogle Scholar
  • 165. M. Randelovic, S. Nedeljkovic, M. Jovanovic, M. Cabarkapa, V. Stojanovic, A. Aleksic and D. Randelovic , Use of determination of the importance of criteria in business-friendly certification of cities as sustainable local economic development planning tool, Symmetry 12 (2020) 425. https://doi.org/10.3390/sym12030425 Crossref, Web of ScienceGoogle Scholar
  • 166. E. K. Zavadskas and V. Podvezko , Integrated determination of objective criteria weights in MCDM, International Journal of Information Technology & Decision Making 15(2) (2016) 267–283. Link, Web of ScienceGoogle Scholar
  • 167. I. Vinogradova, V. Podvezko and E. K. Zavadskas , The recalculation of the weights of criteria in MCDM methods using the bayes approach, Symmetry 10(205) (2018) 2–18. Google Scholar
  • 168. H. Jeffreys , Scientific Inference, 3rd edn. (Cambridge University Press, Cambridge, UK, 1973). Google Scholar
  • 169. L. Ustinovichius , Determining integrated weights of attributes, Journal of Civil Engineering and Management 7(4) (2001) 321–326. CrossrefGoogle Scholar
  • 170. R. V. Rao and B. K. Patel , A subjective and objective integrated multiple attribute decision making method for material selection, Materials and Design 31(10) (2010) 4738–4747. Crossref, Web of ScienceGoogle Scholar
  • 171. E. Krishnan, R. Mohammed, A. Alnoor, O. S. Albahri, A. A. Zaidan, H. Alsattar, A. S. Albahri, B. B. Zaidan, G. Kou, R. A. Hamid and A. H. Alamoodi , Interval type 2 trapezoidal-fuzzy weighted with zero inconsistency combined with VIKOR for evaluating smart e-tourism applications, International Journal of Intelligent Systems 36(9) (2021) 4723–4774. Crossref, Web of ScienceGoogle Scholar
  • 172. R. T. Mohammed, A. A. Zaidan, R. Yaakob, N. M. Sharef, R. H. Abdullah, B. B. Zaidan, O. S. Albahri and K. H. Abdulkareem , Determining importance of many-objective optimization competitive algorithms evaluation criteria based on a novel fuzzy-weighted zero-inconsistency method, International Journal of Information Technology & Decision Making 21(01) (2022) 195–241. Link, Web of ScienceGoogle Scholar
  • 173. G. Kou, O. Olgu Akdeniz, H. Dincer and S. Yuksel , Fintech investments in European banks: A hybrid IT2 fuzzy multidimensional decision making approach, Financial Innovation 7(39) (2021a) 1–28. Google Scholar
  • 174. F. Liang, M. Brunelli, K. Septian and J. Rezaei , Belief-based best worst method, International Journal of Information Technology & Decision Making 20(1) (2021) 287–320. Link, Web of ScienceGoogle Scholar
  • 175. M. Keshavarz Ghorabaee, E. K. Zavadskas, M. Amiri and J. Antucheviciene , A new method of assessment based on fuzzy ranking and aggregated weights (AFRAW) for MCDM problems under type-2 fuzzy environment, Economic Computation and Economic Cybernetics Studies and Research 50(1) (2016) 39–68. Web of ScienceGoogle Scholar
  • 176. E. K. Zavadskas, Z. Stevic, I. Tanackov and O. Prentkovskis , A novel multi-criteria approach — rough step-wise weight assessment ratio analysis method (R-SWARA) and its application in logistics, Studies in Informatics and Control 27(1) (2018) 97–106. Crossref, Web of ScienceGoogle Scholar
  • 177. N. F. Pan , Fuzzy AHP approach for selecting the suitable bridge construction method, Automation in Construction 17 (2008) 958–965. Crossref, Web of ScienceGoogle Scholar
  • 178. M. L. Tseng and A. S. F. Chiu , Evaluating firm’s green supply chain management in linguistic preferences, Journal of Cleaner Production 40 (2013) 22–31. Crossref, Web of ScienceGoogle Scholar
  • 179. Y. J. Lai and C. L. Hwang , Fuzzy Multiple Objective Decision Making: Methods and Applications (Springer, Berlin, 1996). Google Scholar
  • 180. A. Borovicka , New approach for estimation of criteria weights based on a linguistic evaluation, Expert Systems with Applications 125 (2019) 100–111. Crossref, Web of ScienceGoogle Scholar
  • 181. B. Ezell, C. J. Lynch and P. T. Hester , Methods for weighting decisions to assist modelers and decision analysts: A review of ratio assignment and approximate techniques, Applied Science 11 (2021) 10397. CrossrefGoogle Scholar
  • 182. I. H. Sarker, A. Colman, J. Han, A. I. Khan, Y. B. Abushark and K. Salah , BehavDT: A behavioral decision tree learning to build user-centric context-aware predictive model, Mobile Networks and Applications 25 (2020) 1151–1161. Crossref, Web of ScienceGoogle Scholar
  • 183. T. C. Wang and H. D. Lee , Developing a fuzzy TOPSIS approach based on subjective weights and objective weights, Expert Systems with Applications 36 (2009) 8980–8985. Crossref, Web of ScienceGoogle Scholar
  • 184. M. Zhou, X. Liu, Y. Chen, X. Qian, J. Yang and J. Wu , Assignment of attribute weights with belief distributions for MADM under uncertainties, Knowledge-Based Systems 189(3) (2020) 105–110. Google Scholar
  • 185. D. H. Stimson , Utility measurement in public health decision making, Management Science 16(2) (1969) B17–B30. Crossref, Web of ScienceGoogle Scholar
  • 186. F. Barron and B. E. Barrett , Decision quality using ranked attribute weights, Management Science 42(11) (1996) 1515–1523. Crossref, Web of ScienceGoogle Scholar
  • 187. P. Sureeyatanapas, K. Sriwattananusart, T. Niyamosoth, W. Sessomboon and S. Arunyanart , Supplier selection towards uncertain and unavailable information: An extension of TOPSIS method, Operations Research Perspectives 5 (2018) 69–79. Crossref, Web of ScienceGoogle Scholar
  • 188. M. Amiri and M. S. M. M. Emamat , Goal programming model for BWM, Informatica 31(1) (2020) 21–34. Crossref, Web of ScienceGoogle Scholar
  • 189. G. A. Miller , The magical number seven, plus or minus two: Some limits on our capability for processing information, Psychological Review 63 (1965) 81–97. CrossrefGoogle Scholar
  • 190. X. Xu , A note on the subjective and objective integrated approach to determine attributes weights, European Journal of Operational Research 156(2) (2004) 530–532. Crossref, Web of ScienceGoogle Scholar
  • 191. A. Jahan and K. L. Edwards , A state-of-the-art survey on the influence of normalization techniques in ranking: Improving the materials selection process in engineering design, Materials and Design 65 (2015) 335–342. Crossref, Web of ScienceGoogle Scholar
  • 192. S. Saffarzadeh, A. Hadi-vencheh and A. Jamshidi , Weight determination and ranking priority in interval group MCDM, Scientia Iranica 27(6) (2020) 3242–3252. Web of ScienceGoogle Scholar
  • 193. G. Kou, Y. Xu, Y. Peng, F. Shen, K. Chang and S. Kou , Bankruptcy prediction for SMEs using transactional data and two-stage multi-objective feature selection, Decision Support Systems 140 (2021b) 113429. Crossref, Web of ScienceGoogle Scholar
  • 194. W. Edwards , Social utilities, The Engineering Economist Summer Symposium Series 6 (1977) 119–129. Google Scholar
  • 195. E. U. Choo, B. Schoner and W. C. Wedley , Interpretation of criteria weights in multi-criteria decision making, Computers & Industrial Engineering 37(3) (1999) 527–541. Crossref, Web of ScienceGoogle Scholar
  • 196. M. A. Hatefi and H. R. Balilehvand , Risk assessment of oil and gas drilling operation: An empirical case using a hybrid GROC-VIMUN-modified FMEA method, Process Safety and Environmental Protection 170 (2023) 392–402. Crossref, Web of ScienceGoogle Scholar