Sobolev meets Besov: Regularity for the Poisson equation with Dirichlet, Neumann and mixed boundary values
Abstract
We study the regularity of solutions of the Poisson equation with Dirichlet, Neumann and mixed boundary values in polyhedral cones in the specific scale of Besov spaces. The regularity of the solution in these spaces determines theorder of approximation that can be achieved by adaptive and nonlinear numerical schemes. We aim for a thorough discussion of homogeneous and inhomogeneous boundary data in all settings studied and show that the solutions are much smoother in this specific Besov scale compared to the fractional Sobolev scale in all cases,which justifies the use of adaptive schemes.
References
- 1. , Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959) 623–727. Crossref, Web of Science, Google Scholar
- 2. , Mixed problems in a Lipschitz domain for strongly elliptic second-order systems, Funct. Anal. Appl. 45(2) (2011) 81–98. Crossref, Web of Science, Google Scholar
- 3. P. A. Cioica-Licht, An -theory for the stochastic heat equation on angular domains in with mixed weights, preprint (2020), arXiv:2003.03782v2 [math.PR]. Google Scholar
- 4. , On the regularity of the stochastic heat equation on polygonal domains in , J. Differential Equations 267 (2019) 6447–6479. Crossref, Web of Science, Google Scholar
- 5. , On the limit regularity in Sobolev and Besov scales related to approximation theory, J. Fourier Anal. Appl. 26(1) (2020) 10. Crossref, Web of Science, Google Scholar
- 6. , On the limit Sobolev regularity for Dirichlet and Neumann problems on Lipschitz domains, Math. Nachr. 292 (2019) 2165–2173. Crossref, Web of Science, Google Scholar
- 7. , Besov regularity for elliptic boundary value problems on polygonal domains, Appl. Math. Lett. 12(6) (1999) 31–38. Crossref, Web of Science, Google Scholar
- 8. S. Dahlke, Besov Regularity for the Neumann Problem, Berichte aus der Technomathematik, Report 01-11 (2001). Google Scholar
- 9. , Nonlinear approximation and adaptive techniques for solving elliptic operator equations, in Multiscale Wavelet Methods for Partial Differential Equations, eds. W. Dahmen, A. J. Kurdila and P. Oswald ,
Wavelet Analysis and Applications , Vol. 6 (Academic Press, San Diego, 1997), pp. 237–283. Crossref, Google Scholar - 10. , Besov regularity for elliptic boundary value problems, Comm. Partial Differential Equations 22(1–2) (1997) 1–16. Crossref, Web of Science, Google Scholar
- 11. S. Dahlke, M. Hansen, C. Schneider and W. Sickel,Properties of Kondratiev spaces, preprint (2020). Google Scholar
- 12. , Optimal approximation of elliptic problems by linear and nonlinear mappings. II, J. Complexity 22 (2006) 549–603. Crossref, Web of Science, Google Scholar
- 13. , Besov regularity of parabolic and hyperbolic PDEs. Anal. Appl. 17 (2019) 235–291. Link, Web of Science, Google Scholar
- 14. , Besov regularity for the Poisson equation in smooth and polyhedral cones, in Sobolev Spaces in Mathematics II.
Applications in Analysis and Partial Differential Equations (Springer, New York, 2008), pp. 123–145. Google Scholar - 15. , Convergence rates for adaptive finite elements, IMA J. Numer. Anal. 29(4) (2009) 917–936. Crossref, Web of Science, Google Scholar
- 16. , Singularities in Boundary Value Problems,
Research Notes in Applied Mathematics , Vol. 22 (Springer, Berlin, 1992). Google Scholar - 17. , Elliptic Problems in Nonsmooth Domains.
Classics in Applied Mathematics , Vol. 69 (SIAM, Philadelphia, 2011), reprint of the 1985 original. Crossref, Google Scholar - 18. , Nonlinear approximation rates and Besov regularity for elliptic PDEs on polyhedral domains, Found. Comput. Math. 15 (2015) 561–589. Crossref, Google Scholar
- 19. M. Hansen, C. Schneider and F. Szemenyei, An extension operator for Sobolev spaces with mixed weights, to be appear in Math. Nachr. Google Scholar
- 20. , The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995) 161–219. Crossref, Web of Science, Google Scholar
- 21. , Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations,
Mathematical Surveys and Monographs , Vol. 85 (American Mathematical Society, Providence, RI, 2001). Google Scholar - 22. , Weighted Sobolev Spaces,
Teubner-Texte zur Mathematik , Vol. 31 (Teubner Verlagsgesellschaft, Leipzig, 1980) Google Scholar - 23. , Weighted estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains, Z. Angew. Math. Mech. 89(7) (2003) 435–467. Crossref, Web of Science, Google Scholar
- 24. , Elliptic Equations in Polyhedral Domains,
Mathematical Surveys and Monographs , Vol. 162 (American Mathematical Society, Providence, RI, 2010). Crossref, Google Scholar - 25. , The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains, Trans. Amer. Math. Soc. 359(9) (2007) 4143–4182. Crossref, Web of Science, Google Scholar
- 26. , Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations,
De Gruyter Series in Nonlinear Analysis and Applications , Vol. 3 (Walter de Gruyter, Berlin, 1996). Crossref, Google Scholar - 27. , On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains, J. London Math. Soc. 60 (1999) 237–257. Crossref, Web of Science, Google Scholar
- 28. , Theory of Function Spaces,
Monographs in Mathematics , Vol. 78 (Birkhäuser Verlag, Basel, 1983). Crossref, Google Scholar - 29. , The inhomogeneous Neumann problem in Lipschitz domains, Comm. Partial Differential Equations 25(9–10) (2000) 1771–1808. Crossref, Web of Science, Google Scholar