World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

Sobolev meets Besov: Regularity for the Poisson equation with Dirichlet, Neumann and mixed boundary values

    https://doi.org/10.1142/S0219530522500026Cited by:2 (Source: Crossref)

    We study the regularity of solutions of the Poisson equation with Dirichlet, Neumann and mixed boundary values in polyhedral cones K3 in the specific scale  Bτ,τα, 1τ=αd+1p  of Besov spaces. The regularity of the solution in these spaces determines theorder of approximation that can be achieved by adaptive and nonlinear numerical schemes. We aim for a thorough discussion of homogeneous and inhomogeneous boundary data in all settings studied and show that the solutions are much smoother in this specific Besov scale compared to the fractional Sobolev scale Hs in all cases,which justifies the use of adaptive schemes.

    AMSC: 35B65, 46E35, 35J05, 35J25, 42C40, 65M12

    References

    • 1. S. Agmon, A. Douglis and L. Nierenberg , Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions I, Comm. Pure Appl. Math. 12 (1959) 623–727. Crossref, Web of ScienceGoogle Scholar
    • 2. M. S. Agranovich , Mixed problems in a Lipschitz domain for strongly elliptic second-order systems, Funct. Anal. Appl. 45(2) (2011) 81–98. Crossref, Web of ScienceGoogle Scholar
    • 3. P. A. Cioica-Licht, An Lp-theory for the stochastic heat equation on angular domains in 2 with mixed weights, preprint (2020), arXiv:2003.03782v2 [math.PR]. Google Scholar
    • 4. P. A. Cioica-Licht, K.-H. Kim and K. Lee , On the regularity of the stochastic heat equation on polygonal domains in 2, J. Differential Equations 267 (2019) 6447–6479. Crossref, Web of ScienceGoogle Scholar
    • 5. P. Cioica-Licht and M. Weimar , On the limit regularity in Sobolev and Besov scales related to approximation theory, J. Fourier Anal. Appl. 26(1) (2020) 10. Crossref, Web of ScienceGoogle Scholar
    • 6. M. Costabel , On the limit Sobolev regularity for Dirichlet and Neumann problems on Lipschitz domains, Math. Nachr. 292 (2019) 2165–2173. Crossref, Web of ScienceGoogle Scholar
    • 7. S. Dahlke , Besov regularity for elliptic boundary value problems on polygonal domains, Appl. Math. Lett. 12(6) (1999) 31–38. Crossref, Web of ScienceGoogle Scholar
    • 8. S. Dahlke, Besov Regularity for the Neumann Problem, Berichte aus der Technomathematik, Report 01-11 (2001). Google Scholar
    • 9. S. Dahlke, W. Dahmen and R. DeVore , Nonlinear approximation and adaptive techniques for solving elliptic operator equations, in Multiscale Wavelet Methods for Partial Differential Equations, eds. W. Dahmen, A. J. Kurdila and P. Oswald , Wavelet Analysis and Applications, Vol. 6 (Academic Press, San Diego, 1997), pp. 237–283. CrossrefGoogle Scholar
    • 10. S. Dahlke and R. A. DeVore , Besov regularity for elliptic boundary value problems, Comm. Partial Differential Equations 22(1–2) (1997) 1–16. Crossref, Web of ScienceGoogle Scholar
    • 11. S. Dahlke, M. Hansen, C. Schneider and W. Sickel,Properties of Kondratiev spaces, preprint (2020). Google Scholar
    • 12. S. Dahlke, E. Novak and W. Sickel , Optimal approximation of elliptic problems by linear and nonlinear mappings. II, J. Complexity 22 (2006) 549–603. Crossref, Web of ScienceGoogle Scholar
    • 13. S. Dahlke and C. Schneider , Besov regularity of parabolic and hyperbolic PDEs. Anal. Appl. 17 (2019) 235–291. Link, Web of ScienceGoogle Scholar
    • 14. S. Dahlke and W. Sickel , Besov regularity for the Poisson equation in smooth and polyhedral cones, in Sobolev Spaces in Mathematics II. Applications in Analysis and Partial Differential Equations (Springer, New York, 2008), pp. 123–145. Google Scholar
    • 15. F. D. Gaspoz and P. Morin , Convergence rates for adaptive finite elements, IMA J. Numer. Anal. 29(4) (2009) 917–936. Crossref, Web of ScienceGoogle Scholar
    • 16. P. Grisvard , Singularities in Boundary Value Problems, Research Notes in Applied Mathematics, Vol. 22 (Springer, Berlin, 1992). Google Scholar
    • 17. P. Grisvard , Elliptic Problems in Nonsmooth Domains. Classics in Applied Mathematics, Vol. 69 (SIAM, Philadelphia, 2011), reprint of the 1985 original. CrossrefGoogle Scholar
    • 18. M. Hansen , Nonlinear approximation rates and Besov regularity for elliptic PDEs on polyhedral domains, Found. Comput. Math. 15 (2015) 561–589. CrossrefGoogle Scholar
    • 19. M. Hansen, C. Schneider and F. Szemenyei, An extension operator for Sobolev spaces with mixed weights, to be appear in Math. Nachr. Google Scholar
    • 20. D. Jerison and C. E. Kenig , The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995) 161–219. Crossref, Web of ScienceGoogle Scholar
    • 21. V. A. Kozlov, V. G. Maz’ya and J. Rossmann , Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations, Mathematical Surveys and Monographs, Vol. 85 (American Mathematical Society, Providence, RI, 2001). Google Scholar
    • 22. A. Kufner , Weighted Sobolev Spaces, Teubner-Texte zur Mathematik, Vol. 31 (Teubner Verlagsgesellschaft, Leipzig, 1980) Google Scholar
    • 23. V. G. Maz’ya and J. Rossmann , Weighted Lp estimates of solutions to boundary value problems for second order elliptic systems in polyhedral domains, Z. Angew. Math. Mech. 89(7) (2003) 435–467. Crossref, Web of ScienceGoogle Scholar
    • 24. V. G. Maz’ya and J. Rossmann , Elliptic Equations in Polyhedral Domains, Mathematical Surveys and Monographs, Vol. 162 (American Mathematical Society, Providence, RI, 2010). CrossrefGoogle Scholar
    • 25. I. Mitrea and M. Mitrea , The Poisson problem with mixed boundary conditions in Sobolev and Besov spaces in non-smooth domains, Trans. Amer. Math. Soc. 359(9) (2007) 4143–4182. Crossref, Web of ScienceGoogle Scholar
    • 26. T. Runst and W. Sickel , Sobolev Spaces of Fractional Order, Nemytskij Operators, and Nonlinear Partial Differential Equations, De Gruyter Series in Nonlinear Analysis and Applications, Vol. 3 (Walter de Gruyter, Berlin, 1996). CrossrefGoogle Scholar
    • 27. V. S. Rychkov , On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains, J. London Math. Soc. 60 (1999) 237–257. Crossref, Web of ScienceGoogle Scholar
    • 28. H. Triebel , Theory of Function Spaces, Monographs in Mathematics, Vol. 78 (Birkhäuser Verlag, Basel, 1983). CrossrefGoogle Scholar
    • 29. D. Zanger , The inhomogeneous Neumann problem in Lipschitz domains, Comm. Partial Differential Equations 25(9–10) (2000) 1771–1808. Crossref, Web of ScienceGoogle Scholar