World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

MODELING SOCIAL RESILIENCE: QUESTIONS, ANSWERS, OPEN PROBLEMS

    https://doi.org/10.1142/S021952592250014XCited by:2 (Source: Crossref)

    Resilience denotes the capacity of a system to withstand shocks and its ability to recover from them. We develop a framework to quantify the resilience of highly volatile, non-equilibrium social organizations, such as collectives or collaborating teams. It consists of four steps: (i) delimitation, i.e. narrowing down the target systems, (ii) conceptualization, i.e. identifying how to approach social organizations, (iii) formal representation using a combination of agent-based and network models, (iv) operationalization, i.e. specifying measures and demonstrating how they enter the calculation of resilience. Our framework quantifies two dimensions of resilience, the robustness of social organizations and their adaptivity, and combines them in a novel resilience measure. It allows monitoring resilience instantaneously using longitudinal data instead of an ex-post evaluation.

    References

    • 1. Abercrombie, G. and Batista-Navarro, R. , Sentiment and position-taking analysis of parliamentary debates: A systematic literature review, J. Comput. Soc. Sci. 3 (2020) 245–270. CrossrefGoogle Scholar
    • 2. Adger, W. N. , Social and ecological resilience: Are they related? Prog. Human Geography 24 (2000) 347–364. Crossref, Web of ScienceGoogle Scholar
    • 3. de Aguiar, M. A. M. and Bar-Yam, Y. , Spectral analysis and the dynamic response of complex networks, Phys. Rev. E 71 (2005) 016106. Crossref, Web of ScienceGoogle Scholar
    • 4. Albert, R., Albert, I. and Nakarado, G. L. , Structural vulnerability of the North American power grid, Phys. Rev. E 69 (2004) 025103. Crossref, Web of ScienceGoogle Scholar
    • 5. Andres, G., Casiraghi, G., Vaccario, G. and Schweitzer, F., Reconstructing signed relations from interaction data, arXiv:2209.03219. Google Scholar
    • 6. Annarelli, A. and Nonino, F. , Strategic and operational management of organizational resilience: Current state of research and future directions, Omega 62 (2016) 1–18. Crossref, Web of ScienceGoogle Scholar
    • 7. Arnetz, B. B., Nevedal, D. C., Lumley, M. A., Backman, L. and Lublin, A. , Trauma resilience training for police: Psychophysiological and performance effects, J. Police Crim. Psychol. 24 (2009) 1–9. CrossrefGoogle Scholar
    • 8. Ash, J. and Newth, D. , Optimizing complex networks for resilience against cascading failure, Physica A 380 (2007) 673–683. Crossref, Web of ScienceGoogle Scholar
    • 9. Baggio, J. A., Brown, K. and Hellebrandt, D. , Boundary object or bridging concept? A citation network analysis of resilience, Ecol. Soc. 20 (2015) 2. Crossref, Web of ScienceGoogle Scholar
    • 10. Bagrow, J. P., Lehmann, S. and Ahn, Y.-Y. , Robustness and modular structure in networks, Netw. Sci. 3 (2015) 509–525. CrossrefGoogle Scholar
    • 11. Barlow, J., França, F., Gardner, T. A., Hicks, C. C., Lennox, G. D., Berenguer, E., Castello, L., Economo, E. P., Ferreira, J., Guénard, B., Gontijo Leal, C., Isaac, V., Lees, A. C., Parr, C. L., Wilson, S. K., Young, P. J. and Graham, N. A. J. , The future of hyperdiverse tropical ecosystems, Nature 559 (2018) 517–526. Crossref, Web of ScienceGoogle Scholar
    • 12. Bascompte, J. and Jordano, P. , Plant-animal mutualistic networks: The architecture of biodiversity, Annu. Rev. Ecol. Evolut. System. 38 (2007) 567–593. Crossref, Web of ScienceGoogle Scholar
    • 13. Battiston, F. et al., The physics of higher-order interactions in complex systems, Nat. Phys. 17 (2021) 1093–1098. Crossref, Web of ScienceGoogle Scholar
    • 14. Beyerlein, M. M., Freedman, S., McGee, C., Moran, L. and Beyerlein, M. , Beyond Teams: Building the Collaborative Organization (Jossey-Bass/Pfeiffer, 2003). Google Scholar
    • 15. Biggs, R. , et al., Toward principles for enhancing the resilience of ecosystem services, Annu. Rev. Environ. Resourc. 37 (2012) 421–448. Crossref, Web of ScienceGoogle Scholar
    • 16. Bonacich, P. , Power and centrality: A family of measures, Amer. J. Sociol. 92 (1987) 1170–1182. Crossref, Web of ScienceGoogle Scholar
    • 17. Brandenberger, L., Casiraghi, G., Nanumyan, V. and Schweitzer, F. , Quantifying triadic closure in multi-edge social networks, in International Conference on Advances in Social Networks Analysis and Mining (ACM, 2019), pp. 307–310. CrossrefGoogle Scholar
    • 18. Brummitt, C. D., D’Souza, R. M. and Leicht, E. A. , Suppressing cascades of load in interdependent networks, Proc. Natl. Acad. Sci. 109 (2012) E680–E689. Crossref, Web of ScienceGoogle Scholar
    • 19. Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O’Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A. and von Winterfeldt, D. , A framework to quantitatively assess and enhance the seismic resilience of communities, Earthq. Spectra 19 (2003) 733–752. Crossref, Web of ScienceGoogle Scholar
    • 20. Bruneau, M. and Reinhorn, A. , Exploring the concept of seismic resilience for acute care facilities, Earthq. Spectra 23 (2007) 41–62. Crossref, Web of ScienceGoogle Scholar
    • 21. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E. and Havlin, S. , Catastrophic cascade of failures in interdependent networks, Nature 464 (2010) 1025–1028. Crossref, Web of ScienceGoogle Scholar
    • 22. Burkholz, R., Garas, A. and Schweitzer, F. , How damage diversification can reduce systemic risk, Phys. Rev. E 93 (2016a) 42313. Crossref, Web of ScienceGoogle Scholar
    • 23. Burkholz, R., Leduc, M. V., Garas, A. and Schweitzer, F. , Systemic risk in multiplex networks with asymmetric coupling and threshold feedback, Physica D 323–324 (2016b) 64–72. Crossref, Web of ScienceGoogle Scholar
    • 24. Burkholz, R. and Schweitzer, F. , Framework for cascade size calculations on random networks, Phys. Rev. E 97 (2018) 042312. Crossref, Web of ScienceGoogle Scholar
    • 25. Carpenter, S., Walker, B., Anderies, J. M. and Abel, N. , From metaphor to measurement: Resilience of what to what? Ecosystems 4 (2001) 765–781. Crossref, Web of ScienceGoogle Scholar
    • 26. Casiraghi, G., Multiplex network regression: How do relations drive interactions? arXiv:2209.03219. Google Scholar
    • 27. Casiraghi, G. , The block-constrained configuration model, Appl. Netw. Sci. 4 (2019) 123. CrossrefGoogle Scholar
    • 28. Casiraghi, G. , The likelihood-ratio test for multi-edge network models, J. Phys.: Compl. 2 (2021) 035012. CrossrefGoogle Scholar
    • 29. Casiraghi, G., Garas, A. and Schweitzer, F., Probing the robustness of nested multi-layer networks, arXiv:1911.03277. Google Scholar
    • 30. Casiraghi, G. and Nanumyan, V. , Configuration models as an urn problem, Sci. Rept. 11 (2021) 13416. Crossref, Web of ScienceGoogle Scholar
    • 31. Casiraghi, G. and Nanumyan, V., ghypernet: Fit and simulate generalised hypergeometric ensembles of graphs, R package version 1.1.1.1. (2022) Google Scholar
    • 32. Casiraghi, G., Nanumyan, V., Scholtes, I. and Schweitzer, F. , From relational data to graphs: Inferring significant links using generalized hypergeometric ensembles, in Social Informatics: 9th International Conference, Lecture Notes in Computer Science (Springer International Publishing, 2017), pp. 111–120. CrossrefGoogle Scholar
    • 33. Casiraghi, G. and Schweitzer, F. , Improving the robustness of online social networks: A simulation approach of network interventions, Front. Robot. AI 7 (2020) 57. Crossref, Web of ScienceGoogle Scholar
    • 34. Casiraghi, G., Zingg, C. and Schweitzer, F. , The downside of heterogeneity: How established relations counteract systemic adaptivity in tasks assignments, Entropy 23 (2021) 1677. Crossref, Web of ScienceGoogle Scholar
    • 35. Chavez-Demoulin, V., Embrechts, P. and Hofert, M. , An extreme value approach for modeling operational risk losses depending on covariates, J. Risk Insur. 83 (2015) 735–776. Crossref, Web of ScienceGoogle Scholar
    • 36. Chiva, R., Alegre, J. and Lapiedra, R. , Measuring organisational learning capability among the workforce, Int. J. Manpower 28 (2007) 224–242. Crossref, Web of ScienceGoogle Scholar
    • 37. Cohen, R., Erez, K., Ben-Avraham, D. and Havlin, S. , Resilience of the internet to random breakdowns, Phys. Rev. Lett. 85 (2000) 4626. Crossref, Web of ScienceGoogle Scholar
    • 38. Coles, E. and Buckle, P. , Developing community resilience as a foundation for effective disaster recovery, Austral. J. Emerg. Manag. 19 (2004) 6–15. Google Scholar
    • 39. Dakos, V., Carpenter, S. R., van Nes, E. H. and Scheffer, M. , Resilience indicators: Prospects and limitations for early warnings of regime shifts, Philos. Trans. R. Soc. B 370 (2015) 20130263. Crossref, Web of ScienceGoogle Scholar
    • 40. Dalziell, E. and McManus, S. , Resilience, vulnerability, and adaptive capacity: Implications for system performance, in 1st Int. Forum for Engineering Decision Making (2004). Google Scholar
    • 41. De Haan, L. and Ferreira, A. , Extreme Value Theory: An Introduction (Springer Science & Business Media, 2007). Google Scholar
    • 42. Deffuant, G.Gilbert, N. (eds.), Viability and Resilience of Complex Systems, Understanding Complex Systems (Springer, Berlin, 2011). CrossrefGoogle Scholar
    • 43. Dinh, L. T., Pasman, H., Gao, X. and Mannan, M. S. , Resilience engineering of industrial processes: Principles and contributing factors, J. Loss Prevent. Process Indust. 25 (2012) 233–241. Crossref, Web of ScienceGoogle Scholar
    • 44. Diveev, A. and Shmalko, E. , Symbolic regression methods, in Machine Learning Control by Symbolic Regression (Springer, 2021). CrossrefGoogle Scholar
    • 45. Egeland, B., Carlson, E. and Sroufe, L. A. , Resilience as process, Develop. Psychopathol. 5 (1993) 517–528. Crossref, Web of ScienceGoogle Scholar
    • 46. Eisenberg, J. and Partridge, C. , The internet under crisis conditions: Learning from September 11, in Telecommunications Policy Research Conference (2003). Google Scholar
    • 47. Elster, J. , Explaining Social Behavior: More Nuts and Bolts for the Social Sciences (Cambridge University Press, 2007). CrossrefGoogle Scholar
    • 48. Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S. and Lorenz, J. , Models of social influence: Towards the next frontiers, J. Artifi. Soc. Soc. Simul. 20 (2017). Web of ScienceGoogle Scholar
    • 49. Flache, A., Mäs, M. and Keijzer, M. A. , Computational approaches in rigorous sociology: Agent-based computational modeling and computational social science, in Handbook of Sociological Science (Edward Elgar Publishing, 2022), pp. 57–72. CrossrefGoogle Scholar
    • 50. Flamino, J., Szymanski, B. K., Bahulkar, A., Chan, K. and Lizardo, O. , Creation, evolution, and dissolution of social groups. Sci. Rept. 11 (2021) 17470. Crossref, Web of ScienceGoogle Scholar
    • 51. Folke, C. , Resilience: The emergence of a perspective for social-ecological systems analyses, Global Environ. Change 16 (2006) 253–267. Crossref, Web of ScienceGoogle Scholar
    • 52. Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C. S. and Walker, B. , Resilience and sustainable development: Building adaptive capacity in a world of transformations, J. Human Environ. 31 (2002) 437–440. CrossrefGoogle Scholar
    • 53. Fraccascia, L., Giannoccaro, I. and Albino, V. , Resilience of complex systems: State of the art and directions for future research, Complexity 2018 (2018) 1–44. Crossref, Web of ScienceGoogle Scholar
    • 54. Francis, R. and Bekera, B. , A metric and frameworks for resilience analysis of engineered and infrastructure systems, Reliab. Eng. Syst. Saf. 121 (2014) 90–103. Crossref, Web of ScienceGoogle Scholar
    • 55. Freeman, S., Hirschhorn, L. and Maltz, M. , Organization resilience and moral purpose: Sandler O’Neill and partners in the aftermath of 9/11/01, in National Academy of Management Meetings, New Orleans, LA, 2004, pp. 17–26. Google Scholar
    • 56. Gallopín, G. C. , Linkages between vulnerability, resilience, and adaptive capacity, Global Environ. Change 16 (2006) 293–303. Crossref, Web of ScienceGoogle Scholar
    • 57. Garas, A. (ed.), Interconnected Networks, 1st edn. (Springer International Publishing, 2016), 229 pp. CrossrefGoogle Scholar
    • 58. Garas, A., Schweitzer, F. and Havlin, S. , A k-shell decomposition method for weighted networks, New J. Phys. 14 (2012) 083030. Crossref, Web of ScienceGoogle Scholar
    • 59. Garcia, D., Kappas, A., Küster, D. and Schweitzer, F. , The dynamics of emotions in online interaction, Roy. Soc. Open Sci. 3 (2016) 160059. Crossref, Web of ScienceGoogle Scholar
    • 60. Garcia, D., Mavrodiev, P. and Schweitzer, F. , Social resilience in online communities: The autopsy of Friendster, in 1st ACM Conf. on Online Social Networks (ACM Press, 2013a), pp. 39–50. CrossrefGoogle Scholar
    • 61. Garcia, D., Zanetti, M. S. and Schweitzer, F. , The role of emotions in contributors activity: A case study on the Gentoo community, in Int. Conf. on Cloud and Green Computing (IEEE, 2013b), pp. 410–417. CrossrefGoogle Scholar
    • 62. Goggins, S. P. and Valetto, G. , Assessing the structural fluidity of virtual organizations and its effects, in Socioinformatics—The Social Impact of Interactions between Humans and IT (Springer, 2014), pp. 121–137. CrossrefGoogle Scholar
    • 63. González, A. D., Chapman, A., Dueñas-Osorio, L., Mesbahi, M. and D’Souza, R. M. , Efficient infrastructure restoration strategies using the recovery operator, Computer-Aided Civil Infrastruct. Eng. 32 (2017) 991–1006. Crossref, Web of ScienceGoogle Scholar
    • 64. Górski, P. J., Bochenina, K., Hołyst, J. A. and D’Souza, R. M. , Homophily based on few attributes can impede structural balance, Phys. Rev. Lett. 125 (2020) 078302. Crossref, Web of ScienceGoogle Scholar
    • 65. Gote, C., Casiraghi, G., Schweitzer, F. and Scholtes, I., Predicting sequences of traversed nodes in graphs using network models with multiple higher orders, arXiv:2007.06662. Google Scholar
    • 66. Gote, C., Scholtes, I. and Schweitzer, F. , git2net: Mining time-stamped co-editing networks from large git repositories, in 16th Int. Conf. Mining Software Repositories (IEEE Press, 2019), pp. 433–444. CrossrefGoogle Scholar
    • 67. Gote, C., Scholtes, I. and Schweitzer, F. , Analysing time-stamped co-editing networks in software development teams using git2net, Empir. Softw. Eng. 26 (2021) 1–41. Crossref, Web of ScienceGoogle Scholar
    • 68. Gote, C. and Zingg, C. , gambit – An open source name disambiguation tool for version control systems, in IEEE/ACM 18th Int. Conf. Mining Software Repositories (IEEE, 2021), pp. 80–84. Google Scholar
    • 69. Grimm, V. and Calabrese, J. M. , What is resilience? A short introduction, in Viability and Resilience of Complex Systems, Deffuant, G.Gilbert, N. (eds.) (Springer, 2011), pp. 3–13. CrossrefGoogle Scholar
    • 70. Grodzinski, W., Cowling, E. B., Breymeyer, A. I. and Phillips, A. S. , Ecological risks: Perspectives from Poland and the United States (National Academy Press, 1990). Google Scholar
    • 71. Guimera, R., Uzzi, B., Spiro, J. and Amaral, L. A. N. , Team assembly mechanisms determine collaboration network structure and team performance, Science 308 (2005) 697–702. Crossref, Web of ScienceGoogle Scholar
    • 72. Gunderson, L. H. , Ecological resilience–In theory and application, Annu. Rev. Ecol. System. 31 (2000) 425–439. CrossrefGoogle Scholar
    • 73. Harary, F. , On the measurement of structural balance, Behav. Sci. 4 (1959) 316–323. CrossrefGoogle Scholar
    • 74. Harrigan, N. and Yap, J. , Avoidance in negative ties: Inhibiting closure, reciprocity, and homophily, Soc. Netw. 48 (2017) 126–141. Crossref, Web of ScienceGoogle Scholar
    • 75. Hedström, P. and Bearman, P. , What is analytical sociology all about? An introductory essay, in Oxford Handbook of Analytical Sociology (Oxford University Press, 2009), pp. 3–24. Google Scholar
    • 76. Helbing, D. and Balietti, S. , From social data mining to forecasting socio-economic crises, Eur. Phys. J. Spec. Top. 195 (2011) 3–68. Crossref, Web of ScienceGoogle Scholar
    • 77. Helfgott, A. , Operationalising systemic resilience, Eur. J. Oper. Res. 268 (2018) 852–864. Crossref, Web of ScienceGoogle Scholar
    • 78. Henderson, K., Gallagher, B., Eliassi-Rad, T., Tong, H., Basu, S., Akoglu, L., Koutra, D., Faloutsos, C. and Li, L. , RolX: Structural role extraction & mining in large graphs, in Proc. 18th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining (2012), pp. 1231–1239. CrossrefGoogle Scholar
    • 79. Henry, D. and Ramirez-Marquez, J. E. , Generic metrics and quantitative approaches for system resilience as a function of time, Reliab. Eng. Syst. Saf. 99 (2012) 114–122. Crossref, Web of ScienceGoogle Scholar
    • 80. Hoegl, M. and Gemuenden, H. G. , Teamwork quality and the success of innovative projects: A theoretical concept and empirical evidence, Organ. Sci. 12 (2001) 435–449. Crossref, Web of ScienceGoogle Scholar
    • 81. Holling, C. S. , Resilience and stability of ecological systems, Annu. Rev. Ecol. System. 4 (1973) 1–23. CrossrefGoogle Scholar
    • 82. Holling, C. S. and Gunderson, L. H. , Resilience and adaptive cycles, in Panarchy: Understanding Transformations in Human and Natural Systems (Island Press, Washington, DC, 2002), pp. 25–62. Google Scholar
    • 83. Hollnagel, E., Woods, D. D. and Leveson, N. , Resilience Engineering: Concepts and Precepts (Ashgate Publishing, Ltd., 2007). Google Scholar
    • 84. Hołyst, J. A., Kacperski, K. and Schweitzer, F. , Phase transitions in social impact models of opinion formation, Physica A 285 (2000) 199–210. Crossref, Web of ScienceGoogle Scholar
    • 85. Homans, G. C. , The Human Group (Transaction Publishers, 1950). Google Scholar
    • 86. Hosseini, S., Barker, K. and Ramirez-Marquez, J. E. , A review of definitions and measures of system resilience, Reliab. Eng. Syst. Saf. 145 (2016) 47–61. Crossref, Web of ScienceGoogle Scholar
    • 87. Ifejika Speranza, C., Wiesmann, U. and Rist, S. , An indicator framework for assessing livelihood resilience in the context of social–ecological dynamics, Global Environ. Change 28 (2014) 109–119. Crossref, Web of ScienceGoogle Scholar
    • 88. Ilbeigi, M. , Statistical process control for analyzing resilience of transportation networks, Int. J. Disas. Risk Reduct. 33 (2019) 155–161. Crossref, Web of ScienceGoogle Scholar
    • 89. Jones, D. , Social evolution: The ritual animal, Nature 493 (2013) 470–472. Crossref, Web of ScienceGoogle Scholar
    • 90. Keck, M. and Sakdapolrak, P. , What is social resilience? Lessons learned and ways forward, Erdkunde 67 (2013) 5–19. Crossref, Web of ScienceGoogle Scholar
    • 91. Kerr, S. E. , Social capital as a determinant of resilience, in Resilience, Zommers, Z.Alverson, K. (eds.) (Elsevier, 2018), pp. 267–275. CrossrefGoogle Scholar
    • 92. Khodaei, A. , Resiliency-oriented microgrid optimal scheduling, IEEE Trans. Smart Grid 5 (2014) 1584–1591. Crossref, Web of ScienceGoogle Scholar
    • 93. Kitano, H. , Biological robustness, Nat. Rev. Genet. 5 (2004) 826–837. Crossref, Web of ScienceGoogle Scholar
    • 94. Kitano, M. K. and Lewis, R. B. , Resilience and coping: Implications for gifted children and youth at risk, Roeper Rev. 27 (2005) 200–205. CrossrefGoogle Scholar
    • 95. Koskinen, J. and Daraganova, G. , Exponential random graph model fundamentals, in Exponential Random Graph Models for Social Networks, Lusher, D.Koskinen, J.Robins, G. (eds.) (Cambridge University Press, 2012), pp. 49–76. CrossrefGoogle Scholar
    • 96. Labianca, G. and Brass, D. J. , Exploring the social ledger: Negative relationships and negative asymmetry in social networks in organizations, Acad. Manag. Rev. 31 (2006) 596–614. Crossref, Web of ScienceGoogle Scholar
    • 97. Lambiotte, R., Rosvall, M. and Scholtes, I. , From networks to optimal higher-order models of complex systems, Nat. Phys. 15 (2019) 313–320. Crossref, Web of ScienceGoogle Scholar
    • 98. Lampel, J., Bhalla, A. and Jha, P. P. , Does governance confer organisational resilience? Evidence from UK employee owned businesses, Eur. Manag. J. 32 (2014) 66–72. Crossref, Web of ScienceGoogle Scholar
    • 99. Latané, B. , The psychology of social impact, Amer. Psychol. 36 (1981) 343. Crossref, Web of ScienceGoogle Scholar
    • 100. Lazega, E., Snijders, T. A. and Wittek, R. P. , A Research Agenda for Social Networks and Social Resilience (Edward Elgar Publishing, 2022). Google Scholar
    • 101. Leifeld, P. and Cranmer, S. J. , A theoretical and empirical comparison of the temporal exponential random graph model and the stochastic actor-oriented model, Netw. Sci. 7 (2019) 20–51. Crossref, Web of ScienceGoogle Scholar
    • 102. Leifeld, P. and Cranmer, S. J. , The stochastic actor-oriented model is a theory as much as it is a method and must be subject to theory tests, Netw. Sci. 10 (2022) 15–19. Crossref, Web of ScienceGoogle Scholar
    • 103. Lengnick-Hall, C. A. and Beck, T. E. , Adaptive fit versus robust transformation: How organizations respond to environmental change, J. Manag. 31 (2005) 738–757. Google Scholar
    • 104. Lenton, T. M., Livina, V. N., Dakos, V., van Nes, E. H. and Scheffer, M. , Early warning of climate tipping points from critical slowing down: Comparing methods to improve robustness, Philos. Trans. R. Soc. A 370 (2012) 1185–1204. Crossref, Web of ScienceGoogle Scholar
    • 105. Levine, S., Assessing resilience: Why quantification misses the point, Overseas Development Institute, London (2014). Google Scholar
    • 106. Liu, Y.-Y., Slotine, J.-J. and Barabasi, A.-L. , Controllability of complex networks, Nature 473 (2011) 167–173. Crossref, Web of ScienceGoogle Scholar
    • 107. Lorenz, J., Battiston, S. and Schweitzer, F. , Systemic risk in a unifying framework for cascading processes on networks, Eur. Phys. J. B 71 (2009) 441–460. Crossref, Web of ScienceGoogle Scholar
    • 108. Luthar, S. S. , Resilience and Vulnerability: Adaptation in the Context of Childhood Adversities (Cambridge University Press, 2003). CrossrefGoogle Scholar
    • 109. Maguire, B. and Hagan, P. , Disasters and communities: Understanding social resilience, Austral. J. Emerg. Manag. 22 (2007) 16–20. Google Scholar
    • 110. Mamouni Limnios, E. A., Mazzarol, T., Ghadouani, A. and Schilizzi, S. G. , The resilience architecture framework: Four organizational archetypes, Eur. Manag. J. 32 (2014) 104–116. Crossref, Web of ScienceGoogle Scholar
    • 111. Marshall, N. , Understanding social resilience to climate variability in primary enterprises and industries, Global Environ. Change 20 (2010) 36–43. Crossref, Web of ScienceGoogle Scholar
    • 112. Masuda, N., Klemm, K. and Eguíluz, V. M. , Temporal networks: Slowing down diffusion by long lasting interactions, Phys. Rev. Lett. 111 (2013) 188701. Crossref, Web of ScienceGoogle Scholar
    • 113. Mavrodiev, P., Fleischmann, D., Kerth, G. and Schweitzer, F. , Quantifying individual influence in leading-following behavior of Bechstein’s bats, Sci. Rep. 11 (2021) 2691. Crossref, Web of ScienceGoogle Scholar
    • 114. McManus, S., Seville, E., Brunsdon, D. and Vargo, J., Resilience management: A framework for assessing and improving the resilience of organisations. Resilient Organizations Research Reports (2007). Google Scholar
    • 115. Medeiros, L. P., Allesina, S., Dakos, V., Sugihara, G. and Saavedra, S. , Ranking species based on sensitivity to perturbations under non-equilibrium community dynamics, Ecol. Lett. 26 (2022) 170–183. Crossref, Web of ScienceGoogle Scholar
    • 116. Meerow, S., Newell, J. P. and Stults, M. , Defining urban resilience: A review, Landscape Urban Plann. 147 (2016) 38–49. Crossref, Web of ScienceGoogle Scholar
    • 117. Morone, F., Del Ferraro, G. and Makse, H. A. , The k-core as a predictor of structural collapse in mutualistic ecosystems, Nat. Phys. 15 (2019) 95–102. Crossref, Web of ScienceGoogle Scholar
    • 118. Morone, F. and Makse, H. A. , Influence maximization in complex networks through optimal percolation, Nature 524 (2015) 65–68. Crossref, Web of ScienceGoogle Scholar
    • 119. Nanumyan, V., Gote, C. and Schweitzer, F. , Multilayer network approach to modeling authorship influence on citation dynamics in physics journals, Phys. Rev. E 102 (2020) 032303. Crossref, Web of ScienceGoogle Scholar
    • 120. Nash, W. A. , Schaum’s Outline of Theory and Problems of Strength of Materials (McGraw-Hill, 1998). Google Scholar
    • 121. Norris, F. H., Stevens, S. P., Pfefferbaum, B., Wyche, K. F. and Pfefferbaum, R. L. , Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness, Amer. J. Commun. Psychol. 41 (2008) 127–150. Crossref, Web of ScienceGoogle Scholar
    • 122. Nowak, A., Szamrej, J. and Latané, B. , From private attitude to public opinion: A dynamic theory of social impact, Psychol. Rev. 97 (1990) 362. Crossref, Web of ScienceGoogle Scholar
    • 123. Obrist, B., Pfeiffer, C. and Henley, R. , Multi-layered social resilience, Prog. Develop. Stud. 10 (2010) 283–293. Crossref, Web of ScienceGoogle Scholar
    • 124. Ostrom, E. , Understanding Institutional Diversity (Princeton University Press, 2009). CrossrefGoogle Scholar
    • 125. Papanikolaou, N., Vaccario, G., Hormann, E., Lambiotte, R. and Schweitzer, F. , Consensus from group interactions: An adaptive voter model on hypergraphs, Phys. Rev. E 105 (2022) 054307. Crossref, Web of ScienceGoogle Scholar
    • 126. Peixoto, T. P. and Bornholdt, S. , Evolution of robust network topologies: Emergence of central backbones, Phys. Rev. Lett. 109 (2012) 118703. Crossref, Web of ScienceGoogle Scholar
    • 127. Petzold, J. , Social capital and small-island resilience, in Social Capital, Resilience and Adaptation on Small Islands (Springer, 2017), pp. 17–61. CrossrefGoogle Scholar
    • 128. Pfitzner, R., Scholtes, I., Garas, A., Tessone, C. J. and Schweitzer, F. , Betweenness preference: Quantifying correlations in the topological dynamics of temporal networks, Phys. Rev. Lett. 110 (2013) 198701. Crossref, Web of ScienceGoogle Scholar
    • 129. Renschler, C., Frazier, A., Arendt, L., Cimellaro, G., Reinhorn, A. and Bruneau, M. , Developing the ‘PEOPLES’ resilience framework for defining and measuring disaster resilience at the community scale, in Proc. 9th U.S. National and 10th Canadian Conf. Earthquake Engineering (2010), pp. 1–10. Google Scholar
    • 130. Reza, G., Alavizadeh, A. and Tarokj, M. , From system-of-systems to meta-systems: Ambiguities and challenges, in System of Systems, Gheorghe, A. V. (ed.), (InTech, 2012), pp. 1–12. CrossrefGoogle Scholar
    • 131. Rivera, M. T., Soderstrom, S. B. and Uzzi, B. , Dynamics of dyads in social networks: Assortative, relational, and proximity mechanisms, Annu. Rev. Sociol. 36 (2010) 91–115. Crossref, Web of ScienceGoogle Scholar
    • 132. Robb, D. , Building resilient organizations, OD Practitioner 32 (2000) 27–32. Google Scholar
    • 133. Robins, G., Pattison, P., Kalish, Y. and Lusher, D. , An introduction to exponential random graph (p*) models for social networks, Social Netw. 29 (2007) 173–191. Crossref, Web of ScienceGoogle Scholar
    • 134. Russo, G., Gote, C., Brandenberger, L., Schlosser, S. and Schweitzer, F., Disentangling active and passive cosponsorship in the U.S. Congress, arXiv:2205.09674. Google Scholar
    • 135. Saavedra, S., Stouffer, D. B., Uzzi, B. and Bascompte, J. , Strong contributors to network persistence are the most vulnerable to extinction, Nature 478 (2011) 233–235. Crossref, Web of ScienceGoogle Scholar
    • 136. Sahebjamnia, N., Torabi, S. and Mansouri, S. , Integrated business continuity and disaster recovery planning: Towards organizational resilience, Eur. J. Oper. Res. 242 (2015) 261–273. Crossref, Web of ScienceGoogle Scholar
    • 137. Sanhedrai, H., Gao, J., Bashan, A., Schwartz, M., Havlin, S. and Barzel, B. , Reviving a failed network through microscopic interventions, Nat. Phys. 18 (2022) 338–349. Crossref, Web of ScienceGoogle Scholar
    • 138. Scheffer, M., Carpenter, S. R., Lenton, T. M., Bascompte, J., Brock, W., Dakos, V., van de Koppel, J., van de Leemput, I. A., Levin, S. A., van Nes, E. H., Pascual, M. and Vandermeer, J. , Anticipating critical transitions, Science 338 (2012) 344–348. Crossref, Web of ScienceGoogle Scholar
    • 139. Scholtes, I., Mavrodiev, P. and Schweitzer, F. , From Aristotle to Ringelmann: A large-scale analysis of team productivity and coordination in Open Source Software projects, Empir. Softw. Eng. 21 (2016a) 642–683. Crossref, Web of ScienceGoogle Scholar
    • 140. Scholtes, I., pathpy contributors, pathpy, Python package version 2.2.0 (2019). Google Scholar
    • 141. Scholtes, I., Wider, N. and Garas, A. , Higher-order aggregate networks in the analysis of temporal networks: Path structures and centralities, Eur. Phys. J. B 89 (2016b) 1–15. Crossref, Web of ScienceGoogle Scholar
    • 142. Scholtes, I., Wider, N., Pfitzner, R., Garas, A., Tessone, C. J. and Schweitzer, F. , Causality-driven slow-down and speed-up of diffusion in non-Markovian temporal networks, Nat. Commun. 5 (2014) 5024. Crossref, Web of ScienceGoogle Scholar
    • 143. Schweighofer, S., Schweitzer, F. and Garcia, D. , A weighted balance model of opinion hyperpolarization, J. Artifi. Soc. Soc. Simul. 23 (2020) 5. Crossref, Web of ScienceGoogle Scholar
    • 144. Schweitzer, F. , The bigger picture: Complexity meets systems design, in Design Tales of Science and Innovation, Gerd Folkers, M. S. (ed.), (Chronos Verlag, Zurich, 2019) pp. 77–86. Google Scholar
    • 145. Schweitzer, F. , Designing systems bottom up: Facets and problems, Adv. Compl. Syst. 23 (2020) 2020001. Link, Web of ScienceGoogle Scholar
    • 146. Schweitzer, F. , Social percolation revisited: From 2d lattices to adaptive network, Physica A 570 (2021) 125687. Crossref, Web of ScienceGoogle Scholar
    • 147. Schweitzer, F. , Agents, Networks, Evolution: A Quarter Century of Advances in Complex Systems (World Scientific, Singapore, 2022a). LinkGoogle Scholar
    • 148. Schweitzer, F. , Group relations, resilience and the I Ching, Physica A 603 (2022b) 127630. Crossref, Web of ScienceGoogle Scholar
    • 149. Schweitzer, F. and Andres, G. , Social nucleation: Group formation as a phase transition, Phys. Rev. E 105 (2022) 044301. Crossref, Web of ScienceGoogle Scholar
    • 150. Schweitzer, F., Casiraghi, G., Tomasello, M. V. and Garcia, D. , Fragile, yet resilient: Adaptive decline in a collaboration network of firms, Front. Appl. Math. Statist. 7 (2021) 6. CrossrefGoogle Scholar
    • 151. Schweitzer, F., Garas, A., Tomasello, M. V., Vaccario, G. and Verginer, L. , The role of network embeddedness on the selection of collaboration partners: An agent-based model with empirical validation, Adv. Compl. Syst. 25 (2022a) 2250003. Link, Web of ScienceGoogle Scholar
    • 152. Schweitzer, F., Mavrodiev, P., Seufert, A. M. and Garcia, D. , Modeling user reputation in online social networks: The role of costs, benefits, and reciprocity, Entropy 22 (2020a) 1073. Crossref, Web of ScienceGoogle Scholar
    • 153. Schweitzer, F., Zhang, Y. and Casiraghi, G. , Intervention scenarios to enhance knowledge transfer in a network of firms, Front. Phys. 8 (2020b) 382. Crossref, Web of ScienceGoogle Scholar
    • 154. Schweitzer, F., Zingg, C. and Casiraghi, G., Struggling with change: The fragile resilience of collectives, arXiv:2210.08224. Google Scholar
    • 155. Seidman, S. B. , Network structure and minimum degree, Social Netw. 5 (1983) 269–287. Crossref, Web of ScienceGoogle Scholar
    • 156. Shai, S., Kenett, D. Y., Kenett, Y. N., Faust, M., Dobson, S. and Havlin, S., Resilience of modular complex networks, arXiv:1404.4748. Google Scholar
    • 157. Shamsuddin, S. , Resilience resistance: The challenges and implications of urban resilience implementation, Cities 103 (2020) 102763. Crossref, Web of ScienceGoogle Scholar
    • 158. Sheffi, Y. and Rice, J. B. J. , A supply chain view of the resilient enterprise, MIT Sloan Manag. Rev. 47 (2005) 41–48. Web of ScienceGoogle Scholar
    • 159. Shenk, L., Krejci, C. and Passe, U. , Agents of change—together: Using agent-based models to inspire social capital building for resilient communities, Commun. Develop. 50 (2019) 256–272. Crossref, Web of ScienceGoogle Scholar
    • 160. Smit, B. and Wandel, J. , Adaptation, adaptive capacity and vulnerability, Global Environ. Change 16 (2006) 282–292. Crossref, Web of ScienceGoogle Scholar
    • 161. Smith, P., Hutchison, D., Sterbenz, J. P., Schöller, M., Fessi, A., Karaliopoulos, M., Lac, C. and Plattner, B. , Network resilience: A systematic approach, IEEE Commun. Mag. 49 (2011) 88–97. Crossref, Web of ScienceGoogle Scholar
    • 162. Snijders, T. A. , Stochastic actor-oriented models for network dynamics, Annu. Rev. Statist. Appl. 4 (2017) 343–363. Crossref, Web of ScienceGoogle Scholar
    • 163. Stephens, T., gplearn contributors, gplearn, Python package version 0.4.2 (2022). Google Scholar
    • 164. Sterbenz, J. P., Hutchison, D., Çetinkaya, E. K., Jabbar, A., Rohrer, J. P., Schöller, M. and Smith, P. , Resilience and survivability in communication networks: Strategies, principles, and survey of disciplines, Comput. Netw. 54 (2010) 1245–1265. Crossref, Web of ScienceGoogle Scholar
    • 165. Sutcliffe, K. and Vogus, T. J. , Organizing for resilience, in Positive Organizational Scholarship: Foundations of a New Discpline (Berret-Koehler, San Francisco, 2003), pp. 94–110. Google Scholar
    • 166. Tamvakis, P. and Xenidis, Y. , Comparative evaluation of resilience quantification methods for infrastructure systems, Procedia — Social Behav. Sci. 74 (2013) 339–348. CrossrefGoogle Scholar
    • 167. Teekens, T., Giardini, F., Zuidersma, J. and Wittek, R. , Shaping resilience: How work team characteristics affect occupational commitment in health care interns during a pandemic, Eur. Soc. 23 (2021) S513–S529. Crossref, Web of ScienceGoogle Scholar
    • 168. Teo, M., Goonetilleke, A. and Ziyath, A. , An integrated framework for assessing community resilience in disaster management, in Proc. 9th Annual Int. Conf. International Institute for Infrastructure Renewal and Reconstruction (Queensland University of Technology, 2015), pp. 309–314. Google Scholar
    • 169. Ureña-Carrion, J., Saramäki, J. and Kivelä, M. , Estimating tie strength in social networks using temporal communication data, EPJ Data Sci. 9 (2020) 37. Crossref, Web of ScienceGoogle Scholar
    • 170. Valdez, L. D., Shekhtman, L., La Rocca, C. E., Zhang, X., Buldyrev, S. V., Trunfio, P. A., Braunstein, L. A. and Havlin, S. , Cascading failures in complex networks, J. Compl. Netw. 8 (2020) cnaa013. Crossref, Web of ScienceGoogle Scholar
    • 171. Villavicencio-Ayub, E., Jurado-Cárdenas, S. and Valencia-Cruz, A. , Work engagement and occupational burnout: Its relation to organizational socialization and psychological resilience, J. Behav. Health Soc. Issues 6 (2015) 45–55. CrossrefGoogle Scholar
    • 172. Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F. and van Mulbregt, P. , SciPy 1.0 contributors, SciPy 1.0: Fundamental algorithms for scientific computing in Python, Nature Methods 17 (2020) 261–272. Crossref, Web of ScienceGoogle Scholar
    • 173. Vogus, T. and Sutcliffe, K. , Organizational resilience: Towards a theory and research agenda, in IEEE Int. Conf. on Systems, Man and Cybernetics (IEEE, 2007), pp. 3418–3422. CrossrefGoogle Scholar
    • 174. Vugrin, E. D., Warren, D. E. and Ehlen, M. A. , A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane, Process Saf. Prog. 30 (2011) 280–290. Crossref, Web of ScienceGoogle Scholar
    • 175. Walker, B., Gunderson, L., Kinzig, A., Folke, C., Carpenter, S. and Schultz, L. , A handful of heuristics and some propositions for understanding resilience in social-ecological systems, Ecol. Soc. 11 (2006) Aritlce No. 13. Crossref, Web of ScienceGoogle Scholar
    • 176. Walker, B., Holling, C. S., Carpenter, S. R. and Kinzig, A. , Resilience, adaptability and transformability in social-ecological systems, Ecol. Soc. 9 (2004) Article No. 5. Crossref, Web of ScienceGoogle Scholar
    • 177. Walker, B. and Salt, D. , Assessing resilience, in Resilience Practice (Island Press/Center for Resource Economics, Washington, DC, 2012), pp. 67–105. CrossrefGoogle Scholar
    • 178. Wang, X., Koç, Y., Kooij, R. E. and Van Mieghem, P. , A network approach for power grid robustness against cascading failures, in 7th Int. Workshop on Reliable Networks Design and Modeling (IEEE, 2015), pp. 208–214. CrossrefGoogle Scholar
    • 179. Wasserman, S. and Faust, K. , Social Network Analysis (Cambridge University Press, 1994). CrossrefGoogle Scholar
    • 180. Wildavsky, A. B. , Searching for Safety, Vol. 10 (Transaction Publishers, 1988). Google Scholar
    • 181. Wuellner, D. R., Roy, S. and D’Souza, R. M. , Resilience and rewiring of the passenger airline networks in the United States, Phys. Rev. E 82 (2010) 056101. Crossref, Web of ScienceGoogle Scholar
    • 182. Xuan, Q., Fang, H., Fu, C. and Filkov, V. , Temporal motifs reveal collaboration patterns in online task-oriented networks, Phys. Rev. E 91 (2015) 052813. Crossref, Web of ScienceGoogle Scholar
    • 183. Zanetti, M. S., Scholtes, I., Tessone, C. J. and Schweitzer, F. , The rise and fall of a central contributor: Dynamics of social organization and performance in the GENTOO community, in Cooperative and Human Aspects of Software Engineering (2013), pp. 49–56. CrossrefGoogle Scholar
    • 184. Zhang, Y., Garas, A. and Scholtes, I. , Higher-order models capture changes in controllability of temporal networks, J. Phys.: Compl. 2 (2020) 015007. CrossrefGoogle Scholar
    • 185. Zhang, Y., Garas, A. and Schweitzer, F. , Value of peripheral nodes in controlling multilayer scale-free networks, Phys. Rev. E 93 (2016) 012309. Crossref, Web of ScienceGoogle Scholar
    • 186. Zhang, Y., Garas, A. and Schweitzer, F. , Control contribution identifies top driver nodes in complex networks, Adv. Compl. Syst. 22 (2019) 1950014. Link, Web of ScienceGoogle Scholar
    • 187. Zingg, C., Casiraghi, G., Vaccario, G. and Schweitzer, F. , What is the entropy of a social organization? Entropy 21 (2019) 901. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in Complex Systems today!