World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

NETWORKS, HETEROGENEITY AND EVOLUTION IN ECONOMICS: A SHORT REVIEW

    https://doi.org/10.1142/S0219525922020015Cited by:1 (Source: Crossref)
    This article is part of the issue:

    Free first page

    References

    • 1. Aiyagari, S. R. , Uninsured idiosyncratic risk and aggregate saving, Q. J. Econ. 109(3) (1994) 659–684. Crossref, Web of ScienceGoogle Scholar
    • 2. Algan, Y., Allais, O., Den Haan, W. J. and Rendahl, P. , Solving and simulating models with heterogeneous agents and aggregate uncertainty, in Handbook of Computational Economics, Vol. 3 (2014), pp. 277–324. CrossrefGoogle Scholar
    • 3. Almquist, Z. W. and Butts, C. T. , Logistic network regression for scalable analysis of networks with joint edge/vertex dynamics, Sociol. Methodol. 44(1) (2014) 273–321. Crossref, Web of ScienceGoogle Scholar
    • 4. Amemiya, T. , Regression analysis when the dependent variable is truncated normal, Econometrica 41(6) (1973) 997–1016. Crossref, Web of ScienceGoogle Scholar
    • 5. Arrow, K. J. and Hanh, F. , General Competitive Analysis (North-Holland, Amsterdam, 1983). Google Scholar
    • 6. Assenza, T. and Delli Gatti, D. , The financial transmission of shocks in a simple hybrid macroeconomic agent based model, J. Evol. Econ. 29 (2019) 265–297. Crossref, Web of ScienceGoogle Scholar
    • 7. Colander, D., Holt, R. P. F. and Barkley Rosser, J. Jr. , The Changing Face of Economics: Conversations with Cutting Edge Economists (University of Michigan Press, 2004). CrossrefGoogle Scholar
    • 8. Bargigli, L. , Statistical ensembles for economic networks, J. Stat. Phys. 155 (2014) 810–825. Crossref, Web of ScienceGoogle Scholar
    • 9. Brock, W. A. and Durlauf, S. N. , Interactions-based models, in Handbook of Econometrics, Heckman, J.Leamer, E. (eds.) (North Holland, Amsterdam, 2001), pp. 3299–3380. CrossrefGoogle Scholar
    • 10. Carroll, C., The epidemiology of macroeconomic expectations, NBER Working Papers No. 8695, National Bureau of Economic Research (2001). Google Scholar
    • 11. Catalano, M. and Di Guilmi, C. , Uncertainty, rationality and complexity in a multi-sectoral dynamic model: The dynamic stochastic generalized aggregation approach, J. Econ. Behav. Organ. 157 (2019) 117–144. Crossref, Web of ScienceGoogle Scholar
    • 12. Cimini, G., Squartini, T., Musmeci, N., Puliga, M., Gabrielli, A., Garlaschelli, D., Battiston, S. and Caldarelli, G. , Reconstructing topological properties of complex networks using the fitness model, in Social Informatics. SocInfo 2014, Lecture Notes in Computer Science, Vol. 8852, Aiello, L.McFarland, D. (eds.) (Springer, 2015), pp. 323–333. CrossrefGoogle Scholar
    • 13. Creal, D., Koopman, S. J. and Lucas, A. , Generalized autoregressive score models with applications, J. Appl. Econ. 28(5) (2013) 777–795. Crossref, Web of ScienceGoogle Scholar
    • 14. De Grauwe, P. , Animal spirits and monetary policy, Econ. Theory 47 (2011) 423–457. Crossref, Web of ScienceGoogle Scholar
    • 15. Delli Gatti, D., Gallegati, M., Greenwald, B., Russo, A. and Stiglitz, J. E. , The financial accelerator in an evolving credit network, J. Econ. Dyn. Control 34(9) (2010) 1627–1650. Crossref, Web of ScienceGoogle Scholar
    • 16. Di Gangi, D., Bormetti, G. and Lillo, F., Score-driven exponential random graphs: A new class of time-varying parameter models for dynamical networks, (2021). Available at SSRN. Google Scholar
    • 17. Dilaver, Ö., Calvert Jump, R. and Levine, P. , Agent-based macroeconomics and dynamic stochastic general equilibrium models: Where do we go from here? J. Econ. Surv. 32 (2018) 1134–1159. Crossref, Web of ScienceGoogle Scholar
    • 18. Dosi, G. and Roventini, A. , More is different … and complex! the case for agent-based macroeconomics, J. Evol. Econ. 29 (2019) 1–37. Crossref, Web of ScienceGoogle Scholar
    • 19. Evans, G. W. and Honkapohja, S. , Learning and Expectations in Macroeconomics (Princeton University Press, 2001). CrossrefGoogle Scholar
    • 20. Garlaschelli, D. and Loffredo, M. I. , Generalized Bose-Fermi statistics and structural correlations in weighted networks, Phys. Rev. Lett. 102(3) (2009) 038701. Crossref, Web of ScienceGoogle Scholar
    • 21. Gobbi, A. and Grazzini, J. , A basic New Keynesian DSGE model with dispersed information: An agent-based approach, J. Econ. Behav. Organ. 157 (2019) 101–116. Crossref, Web of ScienceGoogle Scholar
    • 22. Greene, W. H., Accounting for excess zeros and sample selection in poisson and negative binomial regression models, Working papers 94-10, Department of Economics, New York University, Leonard N. Stern School of Business (1994). Google Scholar
    • 23. Harvey, A. C. , Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series, Vol. 52 (Cambridge University Press, 2013). CrossrefGoogle Scholar
    • 24. Hanneke, S., Fu, W. and Xing, E. P. , Discrete temporal models of social networks, Electron. J. Stat. 4 (2010) 585–605. Crossref, Web of ScienceGoogle Scholar
    • 25. Heckman, J. J. , Sample selection bias as a specification error, Econometrica 47(1) (1979) 153–161. Crossref, Web of ScienceGoogle Scholar
    • 26. Hommes, C. H. , Heterogeneous agent models in economics and finance, in Handbook of Computational Economics, Vol. II, Tesfatsion, L.Judd, K. L. (eds.) (Amsterdam, North-Holland, 2006), pp. 1109–1186. Google Scholar
    • 27. Hommes, C. , Behavioral Rationality and Heterogeneous Expectations in Complex Economic Systems (Cambridge University Press, Cambridge, 2013). CrossrefGoogle Scholar
    • 28. Jackson, M. , Social and Economic Networks (Princeton University Press, 2008). CrossrefGoogle Scholar
    • 29. Kaplan, G., Moll, B. and Violante, G. L. , Monetary policy according to HANK, Am. Econ. Rev. 108(3) (2018) 696–743. Crossref, Web of ScienceGoogle Scholar
    • 30. Kolar, M., Song, L., Ahmed, A. and Xing, E. P. , Estimating time-varying networks, Ann. Appl. Stat. 4(1) (2010) 94–123. Crossref, Web of ScienceGoogle Scholar
    • 31. Krusell, P. and Smith, A. A. Jr. , Income and wealth heterogeneity in the macroeconomy, J. Political Econ. 106(5) (1998) 867–896. Crossref, Web of ScienceGoogle Scholar
    • 32. Kirman, A. P. , Whom or what does the representative individual represent? J. Econ. Perspect. 6(2) (1992) 117–136. Crossref, Web of ScienceGoogle Scholar
    • 33. Diane, L. , Zero-inflated poisson regression, with an application to defects in manufacturing, Technometrics 34(1) (1992) 1–14. Crossref, Web of ScienceGoogle Scholar
    • 34. Lee, J., Li, G. and Wilson, J. D. , Varying-coefficient models for dynamic networks, Comput. Stat. Data Anal. 152 (2020) 107052. Crossref, Web of ScienceGoogle Scholar
    • 35. Massaro, D. , Heterogeneous expectations in monetary DSGE models, J. Econ. Dyn. Control 37 (2013) 680–692. Crossref, Web of ScienceGoogle Scholar
    • 36. Mastromatteo, I., Zarinelli, E. and Marsili, M. , Reconstruction of financial networks for robust estimation of systemic risk, J. Stat. Mech.: Theory Exp. 2012 (2012). Crossref, Web of ScienceGoogle Scholar
    • 37. Newman, M., Barabsi, A.-L. and Watts, D. J. , The Structure and Dynamics of Networks, Princeton Studies in Complexity (Princeton University Press, 2006), p. P03011. Google Scholar
    • 38. Pissarides, C. A. , Equilibrium Unemployment Theory (MIT Press, Cambridge, MA, 2000). Google Scholar
    • 39. Romer, P., The trouble with macroeconomics, mimeo (2016). Available at https://paulromer.net/trouble-with-macroeconomics-update/WP-Trouble.pdf. Google Scholar
    • 40. Roth, A. E. and Oliveira Sotomayor, M. A. , Two-sides Matching. A Study in Game Theoretic Modeling and Analysis (Cambridge University Press, 1990). CrossrefGoogle Scholar
    • 41. Simon, H. , A behavioral model of rational choice, Q. J. Econ. 69(1) (1955) 99–118. Crossref, Web of ScienceGoogle Scholar
    • 42. Salle, I., Yildizoğlu, M. and Sénégas, M. A. , Inflation targeting in a learning economy: An ABM perspective, Econ. Model. 34 (2013) 114–128. Crossref, Web of ScienceGoogle Scholar
    • 43. Santos Silva, J. M. C. and Tenreyro, S. , The log of gravity, Rev. Econ. Stat. 88(4) (2006) 641–658. Crossref, Web of ScienceGoogle Scholar
    • 44. Sewell, D. K. and Chen, Y. , Latent space models for dynamic networks, J. Am. Stat. Assoc. 110(512) (2015) 1646–1657. Crossref, Web of ScienceGoogle Scholar
    • 45. Snijders, T. A. , The statistical evaluation of social network dynamics, Sociol. Methodol. 31(1) (2001) 361–395. Crossref, Web of ScienceGoogle Scholar
    • 46. Wasserman, S. and Faust, K. , Social Network Analysis: Methods and Applications (Cambridge University Press, 1994). CrossrefGoogle Scholar
    • 47. Woodford, M. , Macroeconomic analysis without the rational expectations hypothesis, Annu. Rev. Econ. 5 (2013) 303–346. Crossref, Web of ScienceGoogle Scholar
    • 48. Riccetti, L., Russo, A. and Gallegati, M. , Firm–bank credit network, business cycle and macroprudential policy, J. Econ. Interact. Coord. 17 (2022) 475–499. Crossref, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our titles in Complex Systems today!